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A Computational Tool for Monte Carlo Simulations
of Biomolecular Reaction Networks Modeled

on Physical Principles
Isaac T. S. Li, Evan Mills, and Kevin Truong∗, Member, IEEE

Abstract—Deciphering and designing complex biomolecular
networks in the cell are the goals of systems and synthetic biol-
ogy, respectively. The effects of localization, spatial heterogeneity,
and molecular fluctuations in biomolecular networks are not well
understood. We present a theoretical approach based on physi-
cal principles to accurately simulate biomolecular networks us-
ing the Monte Carlo method. Incorporating this theory, a compu-
tational tool named Monte Carlo biomolecular simulator (MBS)
was developed, enabling studies of biomolecular kinetics with both
spatial and temporal resolutions. The accuracy of MBS was veri-
fied by comparison against the classical deterministic approaches.
Furthermore, the effects of localization, spatial heterogeneity, and
molecular fluctuations were studied in three simulated model sys-
tems, showing their impact on the overall reaction kinetics. This
work demonstrates the unique insights that can be discovered by
considering the subtle effects that can be created by the spatial and
temporal kinetics of biomolecular reaction networks.

Index Terms—Biomolecular reaction networks, Monte Carlo
simulation, spatiotemporal resolution.

I. INTRODUCTION

C ELLS are complex biological systems made of networks
of biomolecular reactions [1]. The study of the kinetic

behavior of these networks is crucial to understanding the in-
tricacies of their resulting cellular behaviors. Most biomolec-
ular studies to date have focused on the interactions and reac-
tion mechanisms among a small number of proteins and other
biomolecules such as nucleotides, metabolites, and ions [2]–[5].
This pioneering work has provided the foundation to study
larger and more sophisticated biomolecular reaction networks
in the cell. These networks have distinct characteristics. First,
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biomolecules in the cell such as proteins, DNA, ions, and
metabolites are spatially organized into compartments or an-
chored to membranes. It is still largely unknown how the lo-
calization of these molecules provides signaling, control, and
functional advantages to the cell. Second, many biomolecu-
lar reactions such as the Ca2+ wave and the action potential
involve both temporal and spatial kinetics. Thus, a molecular
concentration profile in time and space is critical for studying
these networks. Lastly, restricted by the size and organization
of the cell, the population of certain molecular species such as
protein encoding DNA could be as low as single digits. Reac-
tions involving low-copy-number species have large statistical
fluctuation in activities, affecting the stability and variability of
the reaction network. Therefore, being able to simulate all the
aforementioned aspects of biomolecular reactions is crucial for
understanding their resulting cellular behaviors.

There are two classes of approaches to simulate biomolecu-
lar reactions: deterministic and stochastic. The most common
deterministic approach to study biomolecular kinetics is by or-
dinary differential equations (ODEs), which usually assumes
homogeneous concentration for all biomolecular species within
the reaction volume. Therefore, ODE would not provide the de-
sired spatial resolution. One could obtain spatial information by
applying a system of second-order partial differential equations
(PDEs). However, deriving and solving a large system of equa-
tions needed for spatial resolution becomes more challenging
as the number of interactions increases, often requiring many
approximations. Furthermore, the effect of molecular fluctua-
tion for low-copy-number molecular species cannot be easily
handled by a deterministic model. To resolve these problems,
we created a computational tool named Monte Carlo Biomolec-
ular Reaction Simulator (MBS) that used a stochastic model
to simulate the motion and reaction of each molecule in user-
defined spaces. While many computational tools have been used
to simulate signaling pathways and biomolecular oscillations
(for example, StochSim [6], Virtual Cell [7], BioNetS [8], E-Cell
[9], SmartCell [10], ChemCell [11], Meredys, STEPS [12], etc.
[13]–[23]), many of these tools either lacked the stochastic or
spatial considerations of MBS. The computational tools [6], [16]
that considered these effects adopted convenient but crude ap-
proximations of physical principles for the handling of single-
molecule diffusion and reaction probability. Thus, using the
same physical approximations, we could not produce simple
diffusion and reaction rate constants. Consequently, in our com-
putational tool (MBS), we developed a set of physically realistic
models to represent the diffusion and reaction processes. First,

1536-1241/$26.00 © 2009 IEEE



LI et al.: COMPUTATIONAL TOOL FOR MONTE CARLO SIMULATIONS OF BIOMOLECULAR REACTION NETWORKS MODELED 25

Fig. 1. (a) Population distribution of 104 molecules. The molecules were diffused from a single point as a function of their distances from the origin of diffusion.
The three distinctive peaks at distances of 10, 20, and 60 µm were the population distribution of different total time durations of 10, 100, and 1000 ms, respectively.
The three shades were simulations under different time step duration ∆t = 10−3 s (lighter gray), 10−4 s (darker gray), and 10−5 s (black). The population
distribution of (b) uniform step size distribution model and (c) our diffusion model. Both simulations had a total duration of 0.1 s. The deterministic solution was
indicated as the thick gray line. The population distributions using five time step durations ∆t = 10−2 s (solid square), 5 × 10−3 s (hollow square), 10−3 s (solid
triangle), 10−4 s (hollow triangle), and 10−5 s (solid circle) were compared with the deterministic solution.

the validity of these models was verified by showing that it could
produce diffusion and reaction rate constants. Next, the tool was
applied to model complex systems, including a predator–prey
system, genetic oscillator, and Ca2+ wave.

II. RESULTS AND DISCUSSION

A. Diffusion

Our diffusion model accurately described the physical process
of diffusion. Since the physical diffusion process is independent
of simulation time step durations (∆t), a difference in ∆t should
ideally not affect the diffusion kinetics. To test this condition,
104 molecules were placed at a single point and diffused with
various ∆t. The population distributions were identical using
different ∆t in the simulations at three different total simulation
durations [see Fig. 1(a)]. Furthermore, these density distribu-
tions all coincided with the deterministic distribution described
by the macroscopic diffusion equation

∂φ (�r, t)
∂t

= D∇2φ (�r, t)

where D was the diffusion coefficient, ϕ was the density dis-
tribution, �r was the vector from the center of diffusion to the
point of interest, and t was the total duration of diffusion [see
Fig. 1(c)]. Thus, our diffusion model produced the correct spa-
tial profile of molecules, which provided a solid foundation for
accurately assessing reaction kinetics.

In contrast, a uniform step size model used in recent liter-
ature was not accurate in describing the physical process of
diffusion. In this model, the random-walk step size used a uni-
form distribution from 0 to a maximal value depending on D and
∆t. A uniform step size model was compared to our diffusion
model by simulating a total duration of 10−1 s under different
∆t’s (10−1 , 10−2 , 10−3 , and 10−4 s). For these different ∆t,
the uniform step size model produced population distribution
that does not coincide with each other, or with the deterministic
solution [see Fig. 1(b)]. The difference was especially evident
if ∆t was large compared to the total simulation duration. Since
reactions in Monte Carlo simulations are handled by finding
reaction probabilities that are highly dependent on distances
between reagent molecules, an inaccurate spatial distribution

of molecules caused by uniform step size model will yield an
inaccurate simulation of reaction kinetics.

B. Handling Reaction Basics

At the different time step durations (∆t), our reaction model
accurately simulated simple reaction kinetics as the kinetics
curves of the simulation coincided with the deterministic curves.
For the association reaction defined by

A + B
ka−−−−−→ C

an initial concentration of 198 µM (or 500 molecules per cell) for
both A and B was created in a spherical cell with a radius of 1 µm.
The association rate constants ka in the physiological range of
103–108 M−1 ·s−1 were tested. Deterministically, the kinetics of
this reaction was described by the differential equation

d[C]
dt

= ka [A][B].

Since A and B had the same initial concentration A0 , the
equation was simplified as

d[C]
dt

= ka (A0 − [C])2 .

The deterministic curves coincided with the kinetic curves
from the simulation in the ka range of 103–106 M−1 · s−1 [see
Fig. 2(a)]. Furthermore, within this range, the simulation curves
with different ∆t coincided with the deterministic curves (data
not shown). Note that at ka above 107 M−1 · s−1 , the determinis-
tic rate of reaction became faster than the simulated rate, as the
reaction became diffusion limited. This physical phenomenon
occurred in extreme situations when reactions happened faster
than molecules could diffuse into areas depleted of reagent
molecules. This lowered the effective local concentration of the
reagents, and therefore, the speed of reaction became slower.
This phenomenon of diffusion-limited reactions was easily cap-
tured by our model; however, using a deterministic model, it
cannot be captured without additional modifications.

For the dissociation reaction defined by

A
kd−−−−−→ B + C + · · ·
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Fig. 2. (a) Population of reagent molecule as a function of time plotted in
log scale for association reactions with various rate constant ka ranging from
103 to 108 M−1 s−1 . The ∆t was 10−4 s and the total duration was 0.5 s.
(b) Population of reagent molecule as a function of time plotted in log
scale for dissociation reaction with various rate constant kd ranging from
10−1 to 103 s−1 . The ∆t was 10−4 s and the total duration was 0.5 s.
(c) Reversible reaction kinetics showing population of reagent molecule as
a function of time plotted in log scale for association reactions with various
simulation time step durations ∆t = 10−6 to 10−3 s. In all the aforementioned
figures, the simulated kinetics curve (thin black) was compared to the determin-
istic kinetics curve (thick gray). (d) Simulated equilibrium constants with ka

ranging from 104 to 3 × 108 M−1 s−1 and kd ranging from 10 to 1000 s−1 .
Each solid square represented the average simulated equilibrium constants for
a particular value of ka and kd . The error bar was derived from the fluctuation
of molecule population at equilibrium using 1000 equilibrium point. The solid
line represented the deterministic solution of the equilibrium point with a given
kd as a function of ka .

the deterministic rate equation was

d[A]
dt

= −kd [A]

with solution

[A] = [A0 ]e−kd t .

Our simulation kinetic curve coincided with the deterministic
curves for the entire range of kd [see Fig. 2(b)]. Again, this
agreement was independent of ∆t of the simulation (data not
shown).

Reversible reactions were studied by combining the associa-
tion reaction and the dissociation reaction as

A + B
ka−−−−−→←−−−−−
kd

C.

At different ∆t, the simulated kinetics curves coincided with
the deterministic curves and reached the same equilibrium points
[see Fig. 2(c)]. To verify this for a broader range of ka and kd ,
50 reactions with an array of ka and kd values were simulated
to equilibrium point. For ka below 108 M−1 ·s−1 , the simulated
equilibrium concentration of molecule C agreed well with what
was expected from deterministic solution. In contrast for ka

above 108 M−1 ·s−1 , as expected, it did not agree since the
deterministic solution cannot model diffusion-limited reactions
[see Fig. 2(d)].

C. Predator–Prey System

Spatial heterogeneity of a molecular specie arising from
molecular fluctuations created local areas of reaction kinetics
that differ from the population. The predator–prey system was
used to construct a simple spatial and temporal biomolecular os-
cillator. In this model, there was a constant source of molecule
A that can be converted into molecule X (prey molecule) by
molecule X at the rate of ka 1 . Similarly, molecule X can be con-
verted into molecule Y (predator molecule) by molecule Y at the
rate of ka 2 . Lastly, molecule Y decayed into molecule D at the
rate of kd . The biomolecular network is described as

A + X
ka 1−−−−−→ 2X

X + Y
ka 2−−−−−→ 2Y

Y
kd−−−−−→ D.

Deterministically, this was described as follows:

dX(t)
dt

= ka1A(t)X(t) − ka2X(t)Y (t)

dY (t)
dt

= ka2X(t)Y (t) − kdY (t)

where A(t), X(t), and Y(t) were the concentration over time of
A, X, and Y, respectively. The solution to this system of dif-
ferential equations was a stable oscillation in the concentration
of A, X, and Y with a fixed amplitude [see Fig. 3(a) and (b)].
However, our simulation showed that the concentration oscil-
lation varied in amplitude peak and phase [see Fig. 3(c) and
(d)]. While the reaction started with a spatial homogeneity of
molecular species, as reactions occurred, it created local areas
of spatial heterogeneity [see Fig. 3(e)]. The differences in local
concentrations caused local differences in the reaction kinet-
ics, resulting in off-phase concentration oscillations. Since the
overall oscillation was a superposition of the local oscillations,
off-phased local oscillations caused an overall oscillation that
was less coherent and had varying amplitude peaks.

The effect of spatial heterogeneity was reduced by a larger
diffusion coefficient (such as 10−10 m2 /s), which made the
molecular species more homogenous over the course of the
simulation. Using this diffusion coefficient, the peak amplitude
of population oscillation was less varied, resembling the oscil-
latory amplitude of the deterministic solution [see Fig. 3(f)].
In addition, because the amplitude was smaller, the oscilla-
tion frequency was higher, as it took less time to traverse the
predator–prey population phase space where the path length was
shorter. In contrast, a small diffusion coefficient (10−12 m2 /s)
made the molecules less mobile, and hence, kept the molecular
species more localized. Therefore, a large local concentration
can be achieved, which lowered the oscillation frequency (data
not shown). Hence, the diffusion coefficient played an important
role in determining biomolecular kinetics.

D. Prokaryotic and Eukaryotic Genetic Oscillator

The spatial localization of molecules into cellular compart-
ments changed the amplitude or phase of the genetic oscillator.



LI et al.: COMPUTATIONAL TOOL FOR MONTE CARLO SIMULATIONS OF BIOMOLECULAR REACTION NETWORKS MODELED 27

Fig. 3. Deterministic solutions of (a) phase space predator (molecule Y) popu-
lation versus prey (molecule X) population, (b) predator (gray) and prey (black)
population over time, (c) zoomed graph of (b). Monte Carlo simulation solu-
tion of (d) phase space predator population versus prey population, (e) predator
(gray) and prey (black) population over time, (f) zoomed graph of (e). (g) Reac-
tion mixture with spatial heterogeneity of prey (black dots) and predator (gray
dots) molecules. (h) Phase space predator (molecule Y) population versus prey
(molecule X) population of simulations with different diffusion coefficients.
Lower diffusion coefficient (lighter gray) resulted in curves with greater ampli-
tudes while higher diffusion coefficient (darker gray) shifted the curves toward
the bottom left corner. The deterministic solution was shown in black.

To study the effect of molecular localization into compartments,
a prokaryotic genetic oscillator was compared to a eukaryotic
genetic oscillator. In our prokaryotic oscillator, mRNA was tran-
scribed and translated into proteins in the cytoplasm. These
translated protein then regulated gene expression by interacting
with genetic material in the cytoplasm. Conversely, in our eu-
karyotic oscillator, mRNA was transcribed inside the nucleus,
and then transported outside the nucleus where mRNA was
translated into proteins. For these translated protein to regu-
late gene expression, they were transported back into the nu-
cleus. Since transcription and translation were relatively slow
reactions, low reaction rate constants were used. Thus, any
biomolecular species had sufficient time to reach spatial homo-
geneity within its own compartment before the reaction kinetics
changed significantly.

The genetic network was constructed to produce oscillating
concentrations of three different species of proteins each with
a phase shift, as previously described [17] [see Fig. 4(a)]. The
network was composed of three repressor proteins (tetR, lacI,
and λcI) forming a cyclic negative feedback loop—each inhibit-
ing the expression of one other repressor [see Fig. 4(a)]. The

Fig. 4. (a) Plasmid schematic of a genetic oscillator. Regions with arrows were
repressor binding regions of the plasmid DNA. Regions marked with λcI, TetR,
and LacI are the genes regulated by their respective repressor binding regions.
(b) Population changes of the three repressor proteins in the prokaryotic model.
Population oscillations of the three repressor proteins in the eukaryotic model
with (c) low nuclear membrane transport rates of 5 × 103 s−1 and (d) high
nuclear membrane transport rate of 5 × 105 s−1 . Dotted lines represented λcI;
solid black, TetR; solid grey, LacI.

repressor protein and mRNAs were constantly degraded by in-
tracellular proteases and RNase. For instance, if the expression
of tetR was inhibited, tetR protein concentration decreased. This
decrease released the repression of λcI, causing the concentra-
tion of λcI to increase. This cycle propagated and repeated to
create an oscillation in the concentration of each of the repres-
sor proteins with the same delay from each other. Transcription,
translation, and degradation (of both protein and mRNA) were
modeled in our simulation as simple first-order reactions. For
comparison purposes, the synthesis and degradation rates of
mRNA and protein were the same for both prokaryotic and eu-
karyotic cells. The binding between the regulatory regions of the
plasmid DNA and the three repressor proteins were modeled as
reversible reactions with the same dissociation constants in both
systems.

In the simulation of the prokaryotic case, the three repres-
sor proteins oscillated with 2π/3 phase difference, as expected
due to the symmetry of the system [see Fig. 4(b)], while the
oscillation characteristics of the eukaryotic was dependent on
the transport of biomolecules across the nuclear membrane. As
expected in the prokaryotic oscillator, the molecular fluctuation
caused the variations in both the amplitude and phase of the
oscillations similar to the predator–prey system. In the eukary-
otic oscillator, the periodic oscillation pattern was no longer
observed in the simulation when using the same set of initial
conditions [see Fig. 4(c)]. This was due to insufficient trans-
port of mRNA and proteins across the nuclear membrane. The
statistical fluctuation of the nuclear import and export rate in
combination with the phase delay caused by the nuclear trans-
port disrupted the synchrony between the protein expression
and gene repression. This caused the concentration oscillation
of the three repressor proteins to be off from the 2π/3 phase, and
hence, the chaotic fluctuation [see Fig. 4(c)]. When the rate of
nuclear transport was sufficiently high, the oscillation returned
because the phase delay became negligible between the cyto-
plasmic and the nuclear concentration [see Fig. 4(d)]. Thus, the
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Fig. 5. Spatial propagation of the Ca2+ over 14 ms. Top-left corner showed
the triggering Ca2+ event at t = 0 ms. The Ca2+ propagation (horizontal
extension to the right) distributed faster than diffusion (vertical).

creation of a genetic oscillator in a eukaryotic cell will be more
challenging than the prokaryotic case.

E. Ca2+ Wave

Our simulations showed that the kinetics of Ca2+ wave prop-
agation depended on the density and geometric arrangement
of the Ca2+ channels. Through the highly regulated events of
intracellular Ca2+ homeostasis, often seen as a Ca2+ concen-
tration wave, Ca2+ regulates numerous physiological cellular
phenomena, including development, differentiation, and apop-
tosis. When triggered by other secondary messengers such as
inositol-1,4,5-triphosphate (IP3), Ca2+ is released from the en-
doplasmic reticulum (ER) to the cytoplasm by channels such as
the IP3 receptor [24], [25]. To simulate a Ca2+ concentration
wave, we modeled the Ca2+ -induced-Ca2+ -release mechanism,
where the membrane Ca2+ channels were opened when they
bound to Ca2+ from the outside. A cylindrical compartment
representing the ER was lined with Ca2+ channels and filled
with Ca2+ . Hence, when a dose of Ca2+ was added outside at
one end of the cylindrical compartment, the closest Ca2+ chan-
nel bound Ca2+ and released Ca2+ from inside. Subsequently,
this recently released Ca2+ diffused into the surrounding space.
Since the local area outside the recently opened Ca2+ channels
had the highest concentration of Ca2+ , the edge of the Ca2+

diffusion triggered the adjacent channel to release Ca2+ . Thus,
a region with the highest Ca2+ concentration propagates along
the membrane of the cylindrical compartment like a wave (see
Fig. 5).

The surface density of Ca2+ channels, as well as their Ca2+

transport rate, affected the speed of wave propagation. In these
simulations, the Ca2+ channel release rate was in the same order
as Ca2+ diffusion. If the binding and channel-opening events
were slower than Ca2+ diffusion, the speed of Ca2+ wave was
dominated by diffusion, resulting in a wave propagation less
guided by the cylinder [see Fig. 6(c)]. Conversely, if the bind-
ing and channeling opening were faster than Ca2+ diffusion, the
wave propagation speed was faster than diffusion [see Fig. 6(c)].
The Ca2+ channel density also played a very vital role to the
propagation of the Ca2+ . In the case with 1000 channels on the
membrane, there were sufficient channels on the membrane to
maintain a high Ca2+ release rate of ∼420 ions/ms until 14 ms

Fig. 6. Graphical representation of the Ca2+ distribution after 10 ms for
experiments with different channel binding/opening rate. (a) 108 M−1 s−1 .
(b) 107 M−1 s−1 . (c) 106 M−1 s−1 . (d) Ca2+ population outside the com-
partment over time for 1000 membrane channels. (e) Ca2+ release rate over
time for 1000 membrane channels. (f) Ca2+ population outside the compart-
ment over time for 100 membrane channels. (g) Ca2+ release rate over time for
100 membrane channels. Black, dark gray, and light gray lines in each figure
[(d)–(g)] are three simulations using the same setup parameters.

[see Fig. 6(d) and (e)]. At 14 ms, the Ca2+ release rate decreased
to 0 as the propagation reached the end of the cylindrical com-
partment. Multiple runs of the same simulation showed that the
propagation rate and the duration of propagations are consistent
[see Fig. 6(d) and (e)]. In contrast, in the case with only 100
channels on the membrane, the propagation along the cylindri-
cal chamber required Ca2+ release rate over twice as long as in
the case of 1000 membrane channels for an average of 32 ms
[see Fig. 6(f)].

Additionally, the Ca2+ release rate was no longer uniform
throughout the propagation [see Fig. 6(g)] and even the pattern
of release rate was different among simulations with the same
setup parameters [see Fig. 6(f) and (g)]. This is due to decreased
uniformity of membrane channels along the axial direction as
the number of membrane channels is lowered. In a situation with
nonuniform distribution of membrane channels, the regions with
higher channel density has a faster propagation rate and vice
versa. For instance, the simulation shown as black curves in
Fig. 6(f) and (g) had a faster Ca2+ release, and consequently,
faster propagation rate until 15 ms after the propagation started.
The propagation then slowed down due to sparser channels in
the middle section of the cylinder.
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F. Applicability to Other Biological Problems

Here, we presented a program for spatial/stochastic model-
ing based on the accurate description of the physics on single-
molecule reactions. This study can be modified easily to account
for various interesting and challenging problems, specific to bi-
ology. For instance, by adding intermediate reversible reactions
of a reactive species, we can create different intermediate states
of the species, each having their unique physical and chemical
properties. The diffusion behavior of the molecules can be modi-
fied by changing the step size distribution function that allows us
to create diffusion behavior from subdiffusion to superdiffusion.
We could also create compartments that are semipermeable by
creating pores with different permeability inside the membrane.
We model the pores as a reactive species with the molecules that
are allowed to go through the membrane. The association and
dissociation kinetics determine the permeability of molecules
across the membrane. In general, the program is designed such
that all phenomenological rate constants can be converted to a
representative reaction rate constant, allowing the use of simple
models that describe reactions alone to capture the physics of
many other phenomena.

G. Design Considerations of Spatial/Stochastic Software

Besides the apparent difference and advantage between our
program, and the programs that use PDEs, our program has the
simplicity that every rate-limited phenomena can be modeled
by a reaction. This allowed the use of rate constants determined
elsewhere directly in our simulation by converting it to a reaction
rate constant. Similar to some other Monte Carlo programs that
consider the diffusion and reaction of each particle, our model
considered them as well. Our physical model was derived and
tested from first principle that faithfully reproduced the observed
reaction rate constants. Due to the lack of details about the
physical models used in other Monte Carlo programs, we cannot
offer a direct comparison of the physical models used in our
program.

At the moment, the program cannot run in a parallel fashion,
but it is possible with some modifications of the source code to
take advantage of the multiple processors that commonly exists
in modern CPUs and general-purpose utilities (GPUs). In par-
ticular, parallel processing is possible within each reaction time
step. Since the computer is constantly computing the probabil-
ity of reaction of each molecule within each time step and these
events are independent of each other, this computation can be
performed in parallel. In contrast, parallel processing between
steps of the simulation is not feasible because the current spatial
locations of the molecules influence the reaction and location of
molecules in the following time steps.

III. METHODS AND SUPPLEMENTAL INFORMATION

A. Methods

Detailed methods are available online
http://apel.ibbme.utoronto.ca/apel/software/mbs_methods.pdf

B. Example: Engineering a Molecular D-Latch

A detailed example is available online
http://apel.ibbme.utoronto.ca/apel/software/mbs_latch.pdf

C. Software

This software is available online
http://apel.ibbme.utoronto.ca/apel/software
Name: Monte Carlo Biomolecular Reaction Simulator
Programming language: C/C++
License: Open-source and free for academic and nonprofit

use only

IV. CONCLUSION

In this paper, we described the creation of a computational
tool using a Monte Carlo approach for simulating the spatial
and temporal kinetics of biomolecular reaction networks within
a cell. Since our models were based on physical principles, the
tool accurately produced diffusion and reaction constants across
a range of time step durations. Simulations on a predator–prey
system demonstrated the phenomenon of spatial heterogeneity
and its effect on the frequency and amplitude of the oscillation.
Subsequent simulations on prokaryotic and eukaryotic genetic
oscillators demonstrated transport of proteins and mRNA across
a nuclear compartment disturbs the oscillation. In fast reactions
such as Ca2+ waves, density and geometric arrangement of the
Ca2+ channels affect the speed of Ca2+ wave propagation. To-
gether, this paper demonstrates the unique insights that can be
discovered by considering the subtle effects that can be created
by the spatial and temporal kinetics of biomolecular reaction
networks. Future applications of the computational tool include
designing synthetic networks or modeling larger existing bio-
logical networks.
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