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Abstract
Background: While biological systems have often been compared with digital systems, they differ
by the strong effect of crosstalk between signals due to diffusivity in the medium, reaction kinetics
and geometry. Memory elements have allowed the creation of autonomous digital systems and
although biological systems have similar properties of autonomy, equivalent memory mechanisms
remain elusive. Any such equivalent memory system, however, must silence the effect of crosstalk
to maintain memory fidelity.

Results: Here, we present a system of enzymatic reactions that behaves like an RS latch (a simple
memory element in digital systems). Using both a stochastic molecular simulator and ordinary
differential equation simulator, we showed that crosstalk between two latches operating in the
same spatial localization disrupts the memory fidelity of both latches. Crosstalk was reduced or
silenced when simple reaction loops were replaced with multiple step or cascading reactions,
showing that cascading signaling pathways are less susceptible to crosstalk.

Conclusion: Thus, the common biological theme of cascading signaling pathways is advantageous
for maintaining the fidelity of a memory latch in the presence of crosstalk. The experimental
implementation of such a latch system will lead to novel approaches to cell control using synthetic
proteins and will contribute to our understanding of why cells behave differently even when given
the same stimulus.

Background
Biological systems have been compared with digital sys-
tems, but such comparisons cannot be stretched too far as
biological systems are affected by crosstalk between sig-
nals due to diffusivity in the medium, reaction kinetics
and geometry [1-7]. Biological systems share some simi-
larities with digital systems, such as basic logic functions
and emergent network properties (i.e. memory and
robustness) [1-4,6,7]. As demonstration, logic functions

(AND, OR and NOT gates) have been constructed out of
many biological molecules, such as DNA and proteins
[1,5,6]. However, the analogy is limited by the basic issue
of connectivity. Digital systems communicate between
constituent parts using wires, providing direct connec-
tions between components with minimal interference.
With biological systems, however, the biomolecule must
diffuse through a common medium to find its binding
partner, without confusing it with another similar partner.
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When biomolecular binding interactions are "confused"
in this way, the result is crosstalk between distinct systems
and pathways.

Demonstrating a memory element using biological com-
ponents will be an important milestone to understanding
how complex behaviours evolve in biological systems.
The analogous development of memory elements in dig-
ital systems have allowed the creation of finite state
machines (FSMs) that can respond to external inputs
based on the memory of the system's state TAS notedsd-
fjkldfjkldhe most basic memory element in digital sys-
tems is the RS latch which can be created using two cross
coupled NOR gates (Figure 1A). Parallel to this, memory
can exist in cells in two contexts: a global, FSM-like state
or a local, RS latch-like state. A well studied system of glo-
bal memory in a cellular context is the cell cycle [8,9]. An
example of memory storage in this context is the differen-
tial response of a cell to the protein synthesis drug
cycloheximide. A pre-restriction point cell will not divide
if treated with cycloheximide while a post-restriction
point cell will carry on with cell division in the presence
of the drug [9]. This shows that the restriction point is an
example of a global cellular memory state, where a cell's
memory has altered its response to an environmental
stimulus. Local units of cellular memory are often consid-
ered to be small enzyme networks such as kinase or phos-
phorylase feedback loops [10]. While the local memory
mechanisms in a cell may not resemble the cross coupled
NOR gate configuration of an RS latch, it may have an
equivalent memory behaviour that is described by the
truth table of the RS latch behaviour (Figure 1B).

Crosstalk between proteins and signaling pathways intro-
duces complexity and flexibility to cellular systems. How-
ever in the context of memory storage, there must be a
high degree of fidelity between input signals and the vari-
ous components of a system [8]. Many enzymes have
broad ranges of binding affinity for different substrates
that allows them to affect a variety of cellular pathways.
For example, receptor tyrosine kinases (RTKs) represent a

family of enzymes that respond to different upstream sig-
nals (epidermal, fibroblast and platelet-derived growth
factors), and yet can all result in the activation of the
GTPase Ras to a varying degree [11]. Consequently, at
least three different input signals can all interact with the
same effector protein producing crosstalk between various
downstream pathways. However, it is undesirable for a
memory system to be affected by molecules which are not
being directly controlled by the desired, specific, upstream
signal [8].

A stochastic biomolecular simulator based on previous
models [12-22], as well as an ordinary differential equa-
tion simulator [13], was used to investigate a simple net-
work of proteins that can replicate the functionality of an
RS latch in the context of crosstalk. We chose to simulate
crosstalk reactions using both methodologies because
while classical deterministic modeling based on differen-
tial equations can efficiently simulate simple systems,
their assumptions of spatial and temporal homogeneity
are not always accurate in dynamic biological systems.
Furthermore, in some systems the number of molecules
being considered can be very low, thus resulting in a sub-
stantial degree of noise in a reaction network which can-
not easily be handled with differential equations. In
contrast, stochastic modeling can address both issues by
allowing for the random movement of individual mole-
cules in a particular location [1,23]. Stochastic processes
in biological systems modeling initially focused on gene
expression [24-28], but have also been studied in other
pathways such as metabolism and mitosis [29-32]. Thus,
crosstalk was modeled as a set of enzymatic reactions
between two RS latch systems. An enzyme from one RS
latch system could react with the substrate of an analo-
gous enzyme from the second system, but the reaction
occurred at a reduced rate, usually 0.1 to 0.01 that of the
analogous enzyme [4].

Results and discussion
RS latch behaviour resembles enzymatic reactions
A simple reaction system was created with the behaviour
of an RS latch described by its truth table (Figure 2). In
this form the RS latch is essentially a bistable chemical
reaction network [10]. Enzyme R converts substrate Q to
P, while enzyme S converts substrate P to Q. Thus, in the
sole presence of enzyme R, substrate P will eventually
dominate, while in the sole presence of enzyme S, sub-
strate Q will eventually dominate. In the absence of both
enzymes S and R, substrate concentrations do not change
and the last dominate substrate is remembered. Through
a combination of association and dissociation reactions,
the reaction system described above was created (Figure
2A). The reaction rates, kon, koff, and kcat, as well as spatial
constants such as volume, diffusivity and molecule size in
the stochastic simulations are summarized in Table 1.

Schematic diagram of an RS LatchFigure 1
Schematic diagram of an RS Latch. A, The RS latch is 
created using two cross coupled NOR gates. B, Truth table 
for a NOR gated RS latch. Note that the case where both 
inputs are logic 1 is not allowed.
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Rate constants (kon, koff, and kcat) were based on a range of
kinases and phosphatases from the mitogen activated pro-
tein kinase (MAPK) pathway [33], and as such our model
of an RS latch is comparable to real biological systems.
The result of this simulation is identical to the ideal
expected outcome, except for the presence of a time con-
stant (Figure 2B).

An RS latch implemented in this way can be a model of a
pair of inverse enzymatic reactions. That is, the enzyme R
can be a kinase that phosphorylates the substrate Q to

phospho-Q, or substrate P. The enzyme S is then a phos-
phorylase that converts substrate P back to substrate Q. In
this way, the simplest biological memory unit is the func-
tional state (in this model, the phosphorylation state spe-
cifically) of a particular molecule. More complex states,
such as phenotypes, can be built up of many molecular
states in the same way an FSM is built of many RS latches.
In the biological context, it could be possible for both a
phosphorylase and kinase to be available to act on a sub-
strate at the same time. However, this conflicts with the
invalid input R = S = 1 for an RS latch. Going forward, we
will assume that upstream signals that control phosphor-
ylation and dephosphorylation will suppress this possi-
bility thereby maintaining a clearly defined input state for
our model.

Crosstalk requires modification to latch design
As the crosstalk between two latches in the same spatial
location increased, the fidelity of each latch decreased
(Figures 3 and 4). In this example, a system of two latches
was simulated, where the enzymes enclosed in the same
shapes (rectangle or diamond) can crosstalk with each
other's substrates (Figure 3). That is, enzyme A associates
with substrate P at a reduced rate of either 0.1 or 0.01 that
of enzyme S; that is, kon is reduced for the crosstalk reac-
tions. Enzyme S similarly associates with the substrates of
enzyme A. The two enzymes in diamond shaped boxes
(enzymes R and B) behave in the same way with respect to
each other. A simulation with different inputs and
expected outputs for each latch was performed and one
output population of molecules per latch was tracked

Table 1: Constants and values used in stochastic simulations

Constant Meaning Value Units

kon Association rate 104 M-1s-1

koff Dissociation rate 100 s-1

kcat Catalysis rate 104 s-1

V Volume of reaction space m3

menzyme Mass of enzyme 104 gmol-1

msubstrate Mass of substrate 103 gmol-1

D Diffusion coefficient 10-10 m2s-1

Rate constants were based on kinases and phosphatases from the 
MAPK pathway, retrieved from the Database of Quantitative Cellular 
Signalling [33].

4
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Implementation and simulation of a molecular RS latchFigure 2
Implementation and simulation of a molecular RS 
latch. A, Biochemical reactions used to generate latch 
behaviour (left) with the representation as an inverse enzy-
matic cycle (right). B, Simulated time course of the RS latch 
system using stochastic (solid lines, number of molecules) 
and deterministic (dashed lines, concentration in millimolar) 
simulations with specie Q in dark grey lines and P in light 
grey lines. At t = 0 ms, an equal amount of both substrates is 
present. The amount of an enzyme was either 20 molecules 
(stochastic) or 20 mM (deterministic); enzyme S is added at t 
= 0 ms, replaced with R at 1000 ms, S is returned at 2000 ms, 
all enzymes are removed at 3000 ms, R is returned at 5000 
ms and removed at 6000 ms, and finally S is returned at 7000 
ms.
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Schematic of crosstalk interactions between two RS latches in the same spaceFigure 3
Schematic of crosstalk interactions between two RS 
latches in the same space. Enzymes enclosed by the same 
shapes (rectangles or diamonds) can have crosstalk interac-
tions. Specifically, Enzyme S like enzyme A can catalyze sub-
strate C to D, although at a slower rate than enzyme A. 
Enzyme A can similarly catalyze substrate P to Q at a slower 
rate than enzyme S. The same relationship is true for 
enzymes R and B.
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each time (substrate P for SRPQ and substrate C for
ABCD).

To evaluate the effect of crosstalk between latches and our
attempts to silence it, simulations were performed
throughout the paper under three scenarios, each com-
pared with the ideal output (Figure 4A): no crosstalk (Fig-
ure 4B), minimal crosstalk with kcrosstalk = 0.01kprimary
(Figure 4C) and moderate crosstalk with kcrosstalk =
0.1kprimary (Figure 4D). Under the no crosstalk scenario,
each latch behaved ideally (Figure 4B). The continued
presence of a non-zero time constant is a physical reality
and cannot be eliminated. The initial conditions were set
to a random state, represented by each output being 50%

of its maximal potential output. When the first input was
provided (S = 1 and B = 1), the outputs quickly
approached their expected values of P = 0 and C = 1. Once
a value was achieved, it was maintained until the next
input signal arrived at 1000 ms.

Under the minimal crosstalk scenario, there were three
important changes in the system's behaviour, which were
revealed by one or both simulation methods (Figure 4C).
First, the output signals P and C did not reach their new
values as quickly (both methods) or as smoothly (stochas-
tic method only) as with no crosstalk. Second, once the
steady state value for P or C was achieved, it was not as
complete a signal as with no crosstalk (both methods)
and there was fluctuation in the output (stochastic
method only). With both simulation methods, the
desired output for the latches from time points 0 to 1000
ms were no longer P = 0 and C = 1 but rather approxi-
mately P = 0.02 and C = 0.98. The fluctuations in output
were evident in only the stochastic simulations: for exam-
ple, from time points 0 ms to 2000 ms. During this time
period, the latches were assuming opposite values. As a
result, once one latch achieved close to 100% of its
desired output, an opposing enzyme from the other latch
could temporarily alter a substrate into the undesired
state. The temporal nature of this interaction was lost in
the deterministic modeling. A third consequence of cross-
talk was a partial loss of the substrate C signal between
4000 ms and 5000 ms because one system is passively
holding its output while the other is actively outputting
the opposite value (both methods). In this period one sys-
tem, SRPQ, was being actively set to the substrate P = 0
state while the ABCD system was in the "hold output"
state for substrate C = 1. Essentially, the SRPQ system was
overriding the information that was stored in the ABCD
system.

Under the moderate crosstalk scenario, the latches
showed an exaggeration of the trends established in the
minimal crosstalk example, such as reduced steady state
signal (now P = 0.10 and C = 0.90) and output fluctua-
tions (Figure 4D). Notably, the loss of substrate C signal
from 4000 ms to 5000 ms increased. In this situation, sub-
strate C dropped below 0.5 and so the ABCD system out-
putted substrate D = 1 by the end of the relevant time
period. Hereafter, this phenomenon will be referred to as
"forced state switching". This is a serious flaw in the latch
system and must be corrected to ensure a high fidelity
memory system. To improve the memory storage fidelity
of the two latch systems, any solution must reduce forced
state switching and the fluctuations in output values.

Reaction modifications to silence the effect of crosstalk
Introducing a multiple step or cascading pathway to each
latch improved overall fidelity and the addition of more
steps further improved the fidelity but required more time

Simulation of two RS latches with varying degrees of cross-talkFigure 4
Simulation of two RS latches with varying degrees of 
crosstalk. A: Expected output of two ideal RS latches (sub-
strate P is light grey, C is dark grey), B: biochemical latches 
with no crosstalk, C: minimal crosstalk, and D: moderate 
crosstalk. Stochastic results (solid lines) are superimposed 
with deterministic results (dashed lines) for panels B-D with 
substrates P (light lines) and C (dark lines). The relative val-
ues have been normalized to range between 0 and 1 as in a 
digital RS latch. For all panels the inputs were as follows: At t 
= 0 ms, S = 1, B = 1; at 1000 ms, R = 1, A = 1; at 2000 ms, R 
= 1, B = 1; at 3000 ms, A = B = S = R = 0; at 4000 ms, S = 1, 
A = B = 0; at 5000 ms, R = 1, A = 1; at 6000 ms, S = 1, A = 1; 
at 7000 ms, S = 1, B = 1.
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to reach a steady state (Figures 5 and 6). Inspired by bio-
logical signaling pathways, the simple reaction system of
the RS latch was extended by one and two steps in an
enzyme cascade fashion (Figure 5). An extended cascade
for controlling protein activation frequently occurs in sig-
naling pathways. For example, the mitogen activated pro-
tein kinase (MAPK) pathway is a conserved signaling
pathway that culminates with MAPK activation. MAPK
activation can only occur once threonine and tyrosine res-
idues in the TXY loop of MAPK are phosphorylated
[34,35]. This is accomplished by upstream MEK kinases in
the MAPK pathway. This represents a situation where a
protein must undergo two separate transformations to
become activated. Similarly, to completely return MAPK
to its original, inactive state, both the threonine (Thr) and
tyrosine (Tyr) residues must be dephosphrylated by ser-
ine/threonine phosphatase PP2A and tyrosine phos-
phatase PTP, respectively [35]. This situation is analogous
to our two step latch where inactive MAPK is P, active
MAPK is Q, upstream kinases are S and S' and phos-
phatases are R and R', while P' and Q' represent interme-
diate states of MAPK.

The crosstalk in a pair of two-step latches was imple-
mented similarly to the original one step latch (Figure 5).
Now, there was additional crosstalk between enzymes S'
and A', shown in rounded rectangles, and the enzymes R'
and B', shown in ellipses. Crosstalk is biologically moti-
vated using the same principles as with a one-step loop:
phosphorylation and dephosphorylation can be catalyzed
by a range of kinases and phosphatases on a variety of
substrates with different kinetics. This idea is easily extrap-
olated for a three-step latch.

Under the minimal crosstalk scenario, a pair of two-step
(Figure 6A) or three-step latches (Figure 6B) eliminated
the effect of crosstalk by reducing fluctuations and mini-
mizing forced state switching (previously observed in Fig-

Schematic diagram of crosstalk between a pair of two-step latchesFigure 5
Schematic diagram of crosstalk between a pair of 
two-step latches. Each latch has been extended to include 
two enzymes per reaction cascade with one intermediate. 
Crosstalk is implemented between enzymes enclosed in simi-
lar shapes, as before. This can be further extended to a three 
step loop.
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Simulation of two RS latches with varying degrees of cross-talk and cascading signaling pathwaysFigure 6
Simulation of two RS latches with varying degrees of 
crosstalk and cascading signaling pathways. A: Two 
steps with minimal crosstalk, B: Three steps with minimal 
crosstalk C: Two steps with moderate crosstalk, and D: 
Three steps with moderate crosstalk. The same inputs were 
provided as for the simulations of Figure 4. Stochastic results 
(solid lines) are superimposed with deterministic results 
(dashed lines) for substrates PT (light lines) and CT (dark 
lines). Results have been scaled to range between 0 and 1 as 
in a digital RS latch. Outputs have been redefined such that 
PT = P + P' for two step loops or PT = P + P' + P" for three 
steps, and similarly for other outputs.
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ure 4B). However, the time constant increased
considerably when compared with the no crosstalk sce-
nario using a one-step latch (Figure 4A). These trends were
noticeable in both the stochastic and deterministic simu-
lations. Essentially, the second and third steps slowed the
reaction by requiring more collisions between substrates
and enzymes.

Under the moderate crosstalk scenario, the two-step latch
showed some improvement in fidelity (Figure 6C), how-
ever the improvements were more noticeable with three
steps (Figure 6D). In this scenario, significant improve-
ment in fluctuations, steady state output and forced state
switching was not seen until a third step was added, sug-
gesting that cascading reaction pathways are able to trans-
mit signals with a higher fidelity. Furthermore, the forced
state switching from substrate C = 1 to substrate D = 1
between 4000 ms and 5000 ms was prevented (Figure
6D). However, there were two discrepancies between the
simulation methods. First, the deterministic simulations
showed an overshoot past the steady state value for both
the two step and three steps loops that is not present with
the stochastic simulations. Second, the deterministic sim-
ulations suggest that the three step loop is not as success-
ful at restoring the steady state output as was suggested by
the stochastic simulations (deterministic predicts C = 0.92
versus C = 0.96 for stochastic from time 0 to 1000 ms).
These discrepancies could be due to the fluctuations
present in the stochastic simulations that are not present
in the deterministic simulations.

The effective output state of the system was re-defined for
the multiple step latches: for the two-step loops, the out-
puts were the sum of substrates P + P', and similarly for
the other substrates Q, C, and D; for three-step loops, the
sum of substrates P + P' + P". Essentially, the additional
steps in the latch buffered the output molecules and lim-
ited the effect of the crosstalk not on any one molecule,
but the reaction pathway as a whole. Thus, each of the
molecular species was summed because it was part of the
same pathway and had a similar functionality. To see a
biological basis for this, consider the MAPK example
again. Three distinct molecules make one half of the reac-
tion pathway (the Q, Q' and Q" half): unphosphorylated
MAPK, p-Tyr MAPK and p-Thr MAPK. All three molecules
represent inactive forms of MAPK, and so summing them
represents an overall state rather than a specific molecule.
The summing operation is a way of reconstructing the
state from a collection of distinct molecules. The second,
activated, state of MAPK is only achieved when MAPK is
doubly phosphorylated [34,35], which is not included in
the sum, and resides in the other half of the reaction loop.
Given the model of a memory state as a molecule switch-
ing between its phosphorylated and de-phosphorylated
states, it is likely that a molecule can only exist in two
functional states (on or off). However, such a model

could only apply to situations where the functionalities of
each of the intermediate molecules in one half of the reac-
tion loop are the same and would preclude a molecule
being in a transition state where it was either partially
active or had some functionality unrelated to either end
state.

Both simulation methods showed that the time constant
of the switch was longer for reactions with more steps
(Figure 6). This suggested that cascading pathways had
two competing factors: longer cascading pathways trans-
mitted higher fidelity signals, but required more time to
reach a steady state. This effect was more exaggerated in
the stochastic simulations compared to the deterministic
simulations even though the steady state values were sim-
ilar. Given that the stochastic simulations provided more
information on temporal details in previous simulations
(Figure 4), it is likely that the stochastic simulation is
showing a more accurate representation of the system in
its early stages. The compromise between speed and other
biological networks parameters has been noted in previ-
ous work such as negative feedback loops that reduce rise
times at the expense of steady state signal [36] and reac-
tion conditions that improve signal fidelity and specificity
at the expense of speed using compartmentalization [8] or
low-affinity scaffolding [37]. While speed is sacrificed in
our simulations to improve fidelity, biological mecha-
nisms exist that can speed the reaction network without
loss of fidelity such as high-affinity scaffolding in the case
of the MAPK cascade [38].

Overall, this work provides a basis for interpreting bio-
chemical signaling cascades in terms of biological mem-
ory and the limitations placed on this by crosstalk. First,
we have shown that it is possible to consider a very simple
enzymatic system (any two complementary enzymes such
as a kinase and phosphatase) as a memory storage unit
based on the functional state of their common substrate.
However, without modification, the initial memory stor-
age system failed under conditions of crosstalk. Crosstalk,
which is used by cells to both reduce the number of differ-
ent proteins necessary for signaling cascades as well as to
add complexity to signal regulation, has a significant par-
asitic effect on the storage of memory with even two sys-
tems present. We have shown that the parasitic effects of
crosstalk can be silenced by cascading several components
to create one long multistep cascade. This finding pro-
vides insight into the length of biological systems as well
as the tradeoff between network parameters that we have
discussed above. The ability of cells to store memory
allows them to interpret future signals appropriately by
combining these inputs with past information [10]. A
model of biological memory will improve our ability to
interpret how cells respond to signals as they do, and may
provide insights into their rational manipulation.
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Conclusion
This study used stochastic and deterministic modeling to
show that a system of two reciprocal enzymes that toggles
a substrate between two states can resemble a memory ele-
ment, specifically an RS latch. However in a cellular envi-
ronment, crosstalk between similar enzymes receiving
different upstream signals will likely interfere with any
signal transduction or memory storage system. This was
shown to be the case when only two latch systems were
operated in the same spatial localization with a moderate
degree of crosstalk. Increasing the number of steps in the
latches improved the fidelity of two latch systems. How-
ever, additional steps also increased the switching time
constant thus slowing the system response. This may pro-
vide a basis for explaining the length of biological reaction
cascades as a compromise between demands for fidelity
and speed of response. Further modeling of biological sys-
tems' outputs based on known inputs as well as current
states stored in molecular memory will aid in understand-
ing why cells behave differently even when given the same
stimulus. Implementing such a latch system in vitro to
prove its feasibility may also lead to novel approaches to
cell control using synthetic proteins that can be made to
behave as a memory system.

Methods
Stochastic and deterministic simulators used
A stochastic simulator was developed for this study based
on previous stochastic simulators [12-22]. The stochastic
simulator tracks the location of each molecule created and
allows it to perform a random walk (diffuse) through
space. Collisions between molecules are the basis of mass
action reactions. The stochastic simulator accepts user
scripts defining a set of molecules with a particular size
and diffusion coefficient. Then, a set of reactions is mod-
elled as some combination of association between two
molecules with a rate, kf, or dissociation of one molecule
into others with a rate, kr. The user can then specify time
points for the addition or removal of molecules.

Deterministic simulations were carried out using Dynetica
[13].

Crosstalk modeling
Crosstalk was incorporated into the simulation as follows,
based on previous definitions [4,7,8]. Crosstalk, essen-
tially a type of interference, is only relevant when two or
more systems are present. Assume that there are two sys-
tems, one termed SRPQ with four elements, S, R, P and Q
and an identical one termed ABCD with elements A, B, C
and D. Assume that in SRPQ there is one reaction, which
is S + P → SP → S + Q at a rate kprimary = 104. In the second
system there is an equivalent reaction A + C → AC → A +
D at the same rate. Crosstalk is then incorporated as an
additional layer between the two systems. The exact way

that the crosstalk reactions are modeled depends on the
nature of the model. For example, if S and A are enzymes,
Q and D are substrates and P and C are reaction products,
then the cross-talk reactions would be S + C → SC → S +
D at a rate kcrosstalk = 103 and A + P → AP → A + Q at the
same reduced rate [4,7]. Usually kcrosstalk = 0.1 kprimary
(moderate crosstalk) or 0.01 kprimary (minimal crosstalk).
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