

Abstract— To infer homology and subsequently gene
function, the Smith-Waterman algorithm is used to find the
optimal local alignment between two sequences. When
searching sequence databases that may contain billions of
sequences, this algorithm becomes computationally expensive.
Consequently, in this paper, we focused on accelerating the
Smith-Waterman algorithm by modifying the computationally
repeated portion of the algorithm by FPGA hardware custom
instructions. These simple modifications accelerated the
algorithm runtime by an average of 287% compared to the
pure software implementation. Therefore, further design of
FPGA accelerated hardware offers a promising direction to
seeking runtime improvement of genomic database searching.

I. INTRODUCTION

HE Smith-Waterman (SW) algorithm is a well-known
algorithm in computational molecular biology that finds

the optimal alignment between two DNA sequences (one
called target sequence and the other, search sequence) [1].
Determining how well two sequences align is useful for
finding related genes or constructing phylogenetic trees [2].
However, the SW algorithm is not used in sequence database
searching because it is too slow when executed against many
sequences. Instead other faster algorithms such as
FASTA[3] and BLAST[4] are used, but they are not
guaranteed to find the optimal local alignment. Therefore, to
achieve fast as well as optimal alignment, it is necessary to
develop an approach to reduce the computational processing
runtime of the SW algorithm. Briefly, this algorithm is done
by first generating a two dimensional (2D) matrix with its
size equal to the lengths of the DNA sequences. The score
of each cell in the 2D matrix calculated from its neighboring
cells. Finally, the optimal alignment between the two DNA
sequences is determined by backtracking from the cell with
the highest score to the first cell with a zero score.

Here, we reduced the runtime of the SW algorithm using a
Field Programmable Gate Array (FPGA) board. This
algorithm is a good candidate for hardware acceleration
because the scoring calculation for each cell in the 2D
matrix is repeated. Thus, a small acceleration of the scoring

This work was supported by the Banting Foundation and the Natural

Sciences and Engineering Research Council of Canada (NSERC) under
Research Grant RG-PIN 276250.

JC, MS, JS and SS are with the department of Electrical and Computer
Engineering (ECE), University of Toronto, Toronto, ON, Canada.

JC is also with the Institute of Biomaterials and Biomedical Engineering
(IBBME), University of Toronto, Toronto, ON, Canada.

*KT is also with ECE and IBBME, University of Toronto, Toronto, ON,
Canada (kevin.truong@utoronto.ca)

results in a huge overall acceleration. The FPGA is a
reconfigurable device whose digital logic gates can be
optimally configured to run specific functions through the
implementation of custom microprocessor instructions. In
particular, FPGA custom instruction allows the passing of
multiple inputs and outputs in a single clock cycle whereas
the pure-software implementation using a conventional
microprocessor can only pass two. In this paper, we studied
the improvement of computational processing time of the
SW algorithm using custom instructions on an FPGA board.
This was done by first writing the SW algorithm in pure
software and then replacing the portion which was the most
computational intensive with an FPGA custom instruction.
Finally, we compared the processing runtime between the
“pure software” and the “hardware acceleration” versions to
calculate the percentage of runtime improvement.

II. SOFTWARE DEVELOPMENT OF THE SW ALGORITHM

We first described the SW algorithm and then its pure-

software implementation in the C language. This pure-
software implementation is necessary when comparing
against the modification using hardware.

A.. SW Algorithm Description

The SW algorithm belongs to a class of algorithms known

as dynamic programming. Dynamic programming is used
when a large search space can be structured into a
succession of stages such that the initial stage contains trivial
solutions to sub-problems [5]. Typically, this involves
structuring the problem to an iterative calculation of cells in
a matrix. There exist different scoring schemes for the SW
algorithm. Our scheme to compute the score in a cell of
interest “X” is illustrated below:

i) score_nw+1 if Si = Tj (match)
ii) score_anw-1, if Si ≠ Tj (mismatch)
iii) score_n - 1 (gap penalty)

score_X = max
of

iv) score_w - 1 (gap penalty)

(1)

Si is the ith letter in the search sequence; Tj is the jth letter in
the target sequence; score_nw, score_n, score_w are the
score of the cells in the upper diagonal, above and to the left
of cell “X”, respectively (Fig 1). Thus, the score of each cell
in the 2D matrix (except for row 1 and column 1) is
calculated by its neighbouring cells.

Hardware Accelerator for Genomic Sequence
Alignment

Jason Chiang, Michael Studniberg, Jack Shaw, Stephen Seto, Kevin Truong*, Member, IEEE

T

Figure 1. Basic structure of the SW matrix. nw, n, and w are the scores from
the neighbouring cells and X is the single cell of interest.

Even though the SW algorithm is guaranteed to find the
optimal pairwise local alignment, it is demanding of time
and memory resources. If the two sequences being aligned
are m and n in length respectively, then the computational
complexity of this implementation is O(mn).

B. Software implementation

We developed a purely software-based version of the SW
algorithm in C language to serve as the benchmark for
comparison. A high-level description of the program is
described as follows:

- Data acquisition phase: obtain the target and search
sequences from two text files and determine their sequence
lengths.
- Initialization phase: create an empty two 2D score matrix
with the size equal to the sequence lengths. The first matrix,
called the SW matrix, stores the scores from each
comparison between the two query DNA sequences. The
second, called the gap matrix, stores the direction of the gap
for each cell.
- Evaluation phase: execute the SW algorithm. The score of
each cell in the SW matrix is calculated based on the current
letters being compared and the calculated scores and gaps
from the neighbouring cells.
- Result phase: output the completed SW matrix, display the
highest score in the matrix and determine the resultant
alignment sequence as well as the total runtime for the
algorithm.

Note that the hardware modification using a FPGA board

only acted on the evaluation phase as this phase represents
the most computationally intensive portion of the algorithm.
Therefore, for programming convenience the evaluation
phase was treated as an independent module with the
parameters below:

Evaluation (score_nw, score_n, score_w, flag_nw, flag_n,

flag_w, flag_gap, result_score)

flag_nw, flag_n, and flag_w are inputs that are equal to 1

when there is a match between the neighboring cells and the
cell of interest and 0 otherwise; score_gap and the
result_score are outputs that indicate the direction of the gap
(0: no gap, 1: gap from the target sequence, 2: gap from the

search sequence) and the final score for the cell of interest,
respectively.

II. INTEGRATED ACCELERATION APPROACH
AND COMPARISON

The final integrated system contains a microprocessor that

executes the C program and hardware custom instructions.
After execution, the percentage of runtime improvement is
be calculated by comparing the runtime of the accelerated
against the pure software implementation.

A. Custom Instruction for the Evaluation Module in Verilog

We accelerated the SW algorithm by replacing the
evaluation module (section 2.2) with FPGA custom
instructions written in Verilog. Custom instructions (CI) are
assigned digital logic gates that perform user-defined
operations. Particularly, we designed CIs on an Altera Nios
II integrated development environment (IDE). The Nios II
soft microprocessor was instantiated on an FPGA to allow
rapidly prototyping of new designs. Since the format for the
CI provided by Altera only permits two 32-bit inputs and our
single cell CI designed requires 6 inputs (3 scores and 3
flags), the inputs must be partitioned and rearranged such
that they can be all read in a single clock cycle. Recall that
the inputs for evaluation module in the pure-software
implementation are score_nw, score_n, score_w, flag_nw,
flag_n, and flag_w. Using bit masking and shifting bit
operations, all three input score from the neighboring cells
along with their flags can be passed to the cell of interest in
one clock cycle (Fig 2).

CIs were written in Verilog and instantiated on the FPGA

with the Nios II microprocessor. This integrated the CIs into
instruction set of the microprocessor. Therefore, the CIs
could be called from a C program.

Figure 2. Bit partition of custom instruction for the evaluation module. The
input_A and input_B are two 32-bit data containing the scores and flags
from the three neighboring cells, and the output is one 32-bit data
containing the final scores and the direction of alignment gap. The gray
areas indicate the unused data bits.

B. Runtime Comparison of the Accelerated against Pure
Software Implementation

Fifteen test cases using sequence sizes ranging from 100
to 1,500,000 cells were used to analyze the performance of
the accelerated implementation. First, the test cases were
run on the pure software implementation and the runtimes
were recorded. Next, the same procedure was performed on
the accelerated implementation. The runtime improvement is
calculated using the following equation:

%100*1%100*1

11

__% 







−=

















 −
=

ART

SRT

SRT

SRTART

t
t

t

tttimprovemenruntime

tART is the runtime for the accelerated implementation;
tSRT, runtime for the pure software implementation.
Employing this equation, the average improvement from
using the FPGA was 287% (fig 3).

Figure 3. Runtime comparison and % improvement. A) The runtime (in
clock cycles per cell) between the pure software version (in gray) and
integrated system (in black) of five selected cell sizes. B) % runtime
improvement for the accelerated against pure software implementation of
the corresponding cell sizes.

C. Graphical User Interface

To provide a user-friendly environment for the final
integrated system, a graphical user interface (GUI) was
written in Visual Basic 6.0 (Fig 4). The GUI was designed
to perform all operations on the board via a serial port. The
main features of the GUI are described as follows:

- Inputing genomic sequences
- Saving output results to files
- Displaying of the computational progress
- Comparing the performances between the software

and hardware-accelerated implementation

- Calculating runtime % improvement

Figure 4. Screenshot of the GUI

III. CONCLUSION

Since the SW algorithm becomes computationally expensive
for comparing sequences in a large database, we accelerated
the runtime by using FPGA hardware. To quantitatively
assess the runtime improvement, we first wrote the
algorithm in software and then accelerated it using FPGA
CIs. The results showed that the hardware accelerated
algorithm improved the processing runtime by an average of
287%. Thus, using FPGAs is a promising direction for
further research in improving genomic sequence searching.

ACKNOWLEDGEMENT

This work was supported by grants from the Canadian
Foundation of Innovation (CFI) and the National Science
and Engineering Research Council (NSERC).

REFERENCES

[1] T. F. Smith and M. S. Waterman, "Identification of

common molecular subsequences," J Mol Biol, vol.
147, pp. 195-7, 1981.

[2] R. D. Page, "GeneTree: comparing gene and
species phylogenies using reconciled trees,"
Bioinformatics, vol. 14, pp. 819-20, 1998.

[3] D. J. Lipman and W. R. Pearson, "Rapid and
sensitive protein similarity searches," Science, vol.
227, pp. 1435-41, 1985.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman, "Basic local alignment search
tool," J Mol Biol, vol. 215, pp. 403-10, 1990.

[5] R. Giegerich, "A systematic approach to dynamic
programming in bioinformatics," Bioinformatics,
vol. 16, pp. 665-77, 2000.

