
 
 

  

Abstract— To infer homology and subsequently gene 
function, the Smith-Waterman algorithm is used to find the 
optimal local alignment between two sequences.  When 
searching sequence databases that may contain billions of 
sequences, this algorithm becomes computationally expensive. 
Consequently, in this paper, we focused on accelerating the 
Smith-Waterman algorithm by modifying the computationally 
repeated portion of the algorithm by FPGA hardware custom 
instructions. These simple modifications accelerated the 
algorithm runtime by an average of 287% compared to the 
pure software implementation.  Therefore, further design of 
FPGA accelerated hardware offers a promising direction to 
seeking runtime improvement of genomic database searching. 
 

I. INTRODUCTION 
 

HE Smith-Waterman (SW) algorithm is a well-known 
algorithm in computational molecular biology that  finds 

the  optimal alignment between two DNA sequences (one 
called target sequence and the other, search sequence) [1].  
Determining how well two sequences align is useful for 
finding related genes or constructing phylogenetic trees [2].  
However, the SW algorithm is not used in sequence database 
searching because it is too slow when executed against many 
sequences.  Instead other faster algorithms such as 
FASTA[3] and BLAST[4] are used, but they are not 
guaranteed to find the optimal local alignment.  Therefore, to 
achieve fast as well as optimal alignment, it is necessary to 
develop an approach to reduce the computational processing 
runtime of the SW algorithm.  Briefly, this algorithm is done 
by first generating a two dimensional (2D) matrix with its 
size equal to the lengths of the DNA sequences.  The score 
of each cell in the 2D matrix calculated from its neighboring 
cells.  Finally, the optimal alignment between the two DNA 
sequences is determined by backtracking from the cell with 
the highest score to the first cell with a zero score.   

Here, we reduced the runtime of the SW algorithm using a 
Field Programmable Gate Array (FPGA) board. This 
algorithm is a good candidate for hardware acceleration 
because the scoring calculation for each cell in the 2D 
matrix is repeated.  Thus, a small acceleration of the scoring 
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results in a huge overall acceleration.  The FPGA is a 
reconfigurable device whose digital logic gates can be 
optimally configured to run specific functions through the 
implementation of custom microprocessor instructions.  In 
particular, FPGA custom instruction allows the passing of 
multiple inputs and outputs in a single clock cycle whereas 
the pure-software implementation using a conventional 
microprocessor can only pass two.  In this paper, we studied 
the improvement of computational processing time of the 
SW algorithm using custom instructions on an FPGA board.  
This was done by first writing the SW algorithm in pure 
software and then replacing the portion which was the most 
computational intensive with an FPGA custom instruction. 
Finally, we compared the processing runtime between the 
“pure software” and the “hardware acceleration” versions to 
calculate the percentage of runtime improvement. 

 
II. SOFTWARE DEVELOPMENT OF THE SW ALGORITHM 

 
We first described the SW algorithm and then its pure-

software implementation in the C language.  This pure-
software implementation is necessary when comparing 
against the modification using hardware.   

 
A.. SW Algorithm Description 

 
The SW algorithm belongs to a class of algorithms known 

as dynamic programming.  Dynamic programming is used 
when a large search space can be structured into a 
succession of stages such that the initial stage contains trivial 
solutions to sub-problems [5].  Typically, this involves 
structuring the problem to an iterative calculation of cells in 
a matrix.  There exist different scoring schemes for the SW 
algorithm.  Our scheme to compute the score in a cell of 
interest “X” is illustrated below: 
 

i) score_nw+1 if Si = Tj        (match) 
ii) score_anw-1, if Si ≠ Tj        (mismatch) 
iii) score_n - 1                   (gap penalty) 

score_X = max 
of 

iv) score_w - 1                   (gap penalty) 

(1) 

  
 
Si is the ith letter in the search sequence; Tj is the jth letter in 
the target sequence; score_nw, score_n, score_w are the 
score of the cells in the upper diagonal, above and to the left 
of cell “X”, respectively (Fig 1).  Thus, the score of each cell 
in the 2D matrix (except for row 1 and column 1) is 
calculated by its neighbouring cells. 
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Figure 1. Basic structure of the SW matrix. nw, n, and w are the scores from 
the neighbouring cells and X is the single cell of interest.  

 
Even though the SW algorithm is guaranteed to find the 
optimal pairwise local alignment, it is demanding of time 
and memory resources.  If the two sequences being aligned 
are m and n in length respectively, then the computational 
complexity of this implementation is O(mn). 
 
B. Software implementation 
 

We developed a purely software-based version of the SW 
algorithm in C language to serve as the benchmark for 
comparison. A high-level description of the program is 
described as follows: 

 
- Data acquisition phase: obtain the target and search 
sequences from two text files and determine their sequence 
lengths. 
- Initialization phase: create an empty two 2D score matrix 
with the size equal to the sequence lengths.  The first matrix, 
called the SW matrix, stores the scores from each 
comparison between the two query DNA sequences.  The 
second, called the gap matrix, stores the direction of the gap 
for each cell. 
- Evaluation phase: execute the SW algorithm. The score of 
each cell in the SW matrix is calculated based on the current 
letters being compared and the calculated scores and gaps 
from the neighbouring cells. 
- Result phase: output the completed SW matrix, display the 
highest score in the matrix and determine the resultant 
alignment sequence as well as the total runtime for the 
algorithm.  

 
Note that the hardware modification using a FPGA board 

only acted on the evaluation phase as this phase represents 
the most computationally intensive portion of the algorithm. 
Therefore, for programming convenience the evaluation 
phase was treated as an independent module with the 
parameters below: 

 
Evaluation (score_nw, score_n, score_w, flag_nw, flag_n, 

flag_w, flag_gap, result_score) 
 
flag_nw, flag_n, and flag_w are inputs that are equal to 1 

when there is a match between the neighboring cells and the 
cell of interest and 0 otherwise; score_gap and the 
result_score are outputs that indicate the direction of the gap 
(0: no gap, 1: gap from the target sequence, 2: gap from the 

search sequence) and the final score for the cell of interest, 
respectively.   

 
 

II. INTEGRATED ACCELERATION APPROACH 
AND COMPARISON 

 
The final integrated system contains a microprocessor that 

executes the C program and hardware custom instructions. 
After execution, the percentage of runtime improvement is 
be calculated by comparing the runtime of the accelerated 
against the pure software implementation. 
 
A. Custom Instruction for the Evaluation Module in Verilog 
 

We accelerated the SW algorithm by replacing the 
evaluation module (section 2.2) with FPGA custom 
instructions written in Verilog.  Custom instructions (CI) are 
assigned digital logic gates that perform user-defined 
operations.  Particularly, we designed CIs on an Altera Nios 
II integrated development environment (IDE). The Nios II 
soft microprocessor was instantiated on an FPGA to allow 
rapidly prototyping of new designs.  Since the format for the 
CI provided by Altera only permits two 32-bit inputs and our 
single cell CI designed requires 6 inputs (3 scores and 3 
flags), the inputs must be partitioned and rearranged such 
that they can be all read in a single clock cycle.  Recall that 
the inputs for evaluation module in the pure-software 
implementation are score_nw, score_n, score_w, flag_nw, 
flag_n, and flag_w.  Using bit masking and shifting bit 
operations, all three input score from the neighboring cells 
along with their flags can be passed to the cell of interest in 
one clock cycle (Fig 2).  

 
CIs were written in Verilog and instantiated on the FPGA 

with the Nios II microprocessor. This integrated the CIs into 
instruction set of the microprocessor.  Therefore, the CIs 
could be called from a C program.  

 

 
 
Figure 2. Bit partition of custom instruction for the evaluation module. The 
input_A and input_B are two 32-bit data containing the scores and flags 
from the three neighboring cells, and the output is one 32-bit data 
containing the final scores and the direction of alignment gap. The gray 
areas indicate the unused data bits.  
 
 



 
 

B. Runtime Comparison of the Accelerated against Pure 
Software Implementation 
 

Fifteen test cases using sequence sizes ranging from 100 
to 1,500,000 cells were used to analyze the performance of 
the accelerated implementation.  First, the test cases were 
run on the pure software implementation and the runtimes 
were recorded.  Next, the same procedure was performed on 
the accelerated implementation. The runtime improvement is 
calculated using the following equation:  
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tART is the runtime for the accelerated implementation; 
tSRT, runtime for the pure software implementation. 
Employing this equation, the average improvement from 
using the FPGA was 287% (fig 3). 
 

 
 

Figure 3. Runtime comparison and % improvement. A) The runtime (in 
clock cycles per cell) between the pure software version (in gray) and 
integrated system (in black) of five selected cell sizes. B) % runtime 
improvement for the accelerated against pure software implementation of 
the corresponding cell sizes.  
 
C. Graphical User Interface 
 
To provide a user-friendly environment for the final 
integrated system, a graphical user interface (GUI) was 
written in Visual Basic 6.0 (Fig 4).  The GUI was designed 
to perform all operations on the board via a serial port.  The 
main features of the GUI are described as follows: 

- Inputing genomic sequences 
- Saving output results to files 
- Displaying of the computational progress 
- Comparing the performances between the software 

and hardware-accelerated implementation 

- Calculating runtime % improvement 
 

 
 
Figure 4. Screenshot of the GUI 
 

III. CONCLUSION 
 
Since the SW algorithm becomes computationally expensive 
for comparing sequences in a large database, we accelerated 
the runtime by using FPGA hardware.  To quantitatively 
assess the runtime improvement, we first wrote the 
algorithm in software and then accelerated it using FPGA 
CIs. The results showed that the hardware accelerated 
algorithm improved the processing runtime by an average of 
287%.  Thus, using FPGAs is a promising direction for 
further research in improving genomic sequence searching.  
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