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Abstract: Synthetic biology is an emerging field that strives to build increasingly complex biological networks through 

the integration of molecular biology and engineering. The growth of the field has been supported by progress in the design 

and construction of synthetic genetic and protein networks. This has led to the possibility of assembling modular compo-

nents to attain novel biological functions and tools. In addition, these synthetic networks give rise to insights that facilitate 

the investigation of interactions and phenomena in naturally-occurring networks. Integration of well-characterized bio-

logical components into higher order networks requires computational modeling approaches to rationally construct sys-

tems that are directed towards a desired outcome. A computational approach would improve the predictability of the un-

derlying mechanisms that would otherwise be difficult to deduce through experimentation alone. The analysis and inter-

pretation of both qualitative and quantitative models also becomes increasingly important towards taking a systems-level 

perspective on synthetic genetic and protein networks. This review will first discuss the analogy of synthetic networks to 

circuit engineering. It will then look at computational modeling approaches that can be applied to biological systems and 

how synthetic biology will help to develop more accurate in silico representations of these systems.  
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INTRODUCTION 

 Synthetic biology encompasses an engineering-based 
approach to designing biological networks. It shares the ho-
listic perspective of systems biology as its ultimate goal is to 
construct de novo networks of high complexity and intercon-
nectivity. Systems biology aims at understanding systems as 
a whole by studying the interactions between the compo-
nents of biological networks. One goal of systems biology is 
to provide an in-depth comprehensive body of knowledge of 
the interactions and kinetics governing biological systems at 
the molecular level. Progress in synthetic biology will ad-
dress fundamental principles of these biological interactions, 
as well as lead to practical applications in drug discovery and 
biotechnology. In order to move towards a higher-order, sys-
tems-level perspective, it is necessary to examine the com-
position, structure, and kinetics of cellular networks, rather 
than the characteristics of the isolated parts alone.  

 An important post-genomic research area is the analysis 
and elucidation of the dynamic interactions of genes and 
proteins in naturally-occurring systems. The massive amount 
of data generated from genomic sequencing has led to re-
search in the ‘-omics’, including functional genomics and 
proteomics. Linkages between the molecular and system 
levels were recently made possible by advances in these ar-
eas. The current drive is to analyze systems in terms of their 
responses to perturbations and to uncover network features 
such as robustness and degeneracy.  

 
 

*Address correspondence to this author at the Institute of Biomaterials and 

Biomedical Engineering, University of Toronto, 164 College Street, To-

ronto, Ontario, M5S 3G9, Canada; Tel: (416) 978-7772; Fax: (416) 978-

4317; Email: kevin.truong@utoronto.ca 

 This is where synthetic biology can be incorporated to 
achieve systems-level analysis. Molecular characteristics of 
biological interactions have been identified and categorized 
into specific functional modules. A systematic means of 
piecing together different modules to progressively build 
more complex networks will not only lead to a systems-level 
understanding, but also reveal the underlying kinetics gov-
erning how the individual modules interact and respond to 
each other. This results in a more continuous stream of 
knowledge, from molecular to modular to systems descrip-
tions. Not only is there a gap in our understanding and 
knowledge of all biological phenomena, even for biological 
systems in which all the components are known, it is still 
unclear precisely how these components interact to make 
cellular processes work. It is important to note, however, that 
connecting modules into more complex networks will still 
not lead to a bottom-up reconstruction of a complete organ-
ism. The use of synthetic modules will assist in understand-
ing how subnetworks may interact and crosstalk, but emer-
gent properties of an organism arise due to inherent nonline-
arities of complexity and not only by the accumulation of 
modular properties.  

 Natural biological systems include gene regulatory net-
works, protein signaling cascades, and metabolic pathways. 
These complex systems are both structurally and function-
ally diverse, with multifunctional sets of elements that inter-
act selectively and nonlinearly, yet able to produce highly 
specific behaviours. The vast amount of biological data from 
molecular biology has revealed many sequences and proper-
ties of genes and proteins, but is not sufficient for interpret-
ing system behaviour. 

 Recently, computational modeling approaches have been 
employed to study natural biological systems and would be 
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applicable, in fact highly recommended, for synthetic net-
works. These approaches integrate advances in algorithms 
and statistics to analyze biological data. Through a combina-
tion of both experimental and computational approaches, we 
can gain deeper understanding of the function of biological 
processes. Therefore, it is worthwhile to look at how compu-
tational approaches could be used to complement construc-
tion and experimentation of synthetic networks. (Fig. 1)  

CIRCUIT ENGINEERING ANALOGY 

 Biological networks can often be treated as electrical 
circuits. It is thus useful to adopt a vocabulary from circuit 
engineering theory to describe concepts such as input, out-
put, control, logic, feedback, amplification, adaptation, and 
robustness. Both circuits and biological systems transform 
information from one form into another based on a set of 
defined rules. Stimuli function as inputs, while signals 
modulating the behaviour of the system are processed and 
generated as outputs by some established protocol inherently 
defined within the network itself. 

 Mapping out the components of a biological system and 
making the connections between interacting components can 
be analogous to drawing a circuit diagram. In order to de-
duce the mechanisms controlling these biological circuits, a 
parts list needs to be generated and the transformation be-
tween input and output needs to be established. While the 
former has been successful through genomic sequencing and 
protein studies, the latter requires more rigorous analysis. 
Building a circuit to perform a particular function is much 
easier than deducing the function of an existing black-box 
circuit solely through correlating its outputs with its inputs. 

 Circuit control theory has been used to develop a theo-
retical understanding of an adaptation mechanism through 
negative feedback [1, 2]. However, this approach has limita-
tions as control theory assumes that inputs are provided to 
the system, but in biology, such inputs or stimuli are often 
created and refined continuously within the system itself. In 
another study, an integrative modeling approach was used to 
run a circuit simulation of the lysis-lysogeny decision circuit 
of bacteriophage lambda, making use of the parallels be-
tween genetic and electrical circuits [3]. Similarly, other 
frameworks integrating control theory and biological control 
processes have been proposed to describe genetic regulatory 
networks and adaptation in bacterial chemotaxis [2, 4]. 

These function well as system descriptions, drawing parallels 
between biological processes with more established control 
theory. While such an analogy allows for a framework in 
which to systematically identify and analyze synthetic bio-
logical networks, it does not address the need to computa-
tionally study these networks for a more quantitative per-
spective. 

 Beyond some of the borrowed terminology and circuit 
theory, this is where the circuit engineering analogy starts 
breaking down. While in some scenarios biological networks 
can be treated as if they were circuits, there are no counter-
parts for many electrical circuit features and established rules 
such as Kirchoff’s laws. Even for a large complex electrical 
circuit, prior knowledge of the properties and characteristics 
of the individual components is used to build the larger cir-
cuit. This prior knowledge allows every circuit to be accom-
panied by a set of equations reliably describing its function 
and behaviour. Such an unambiguous understanding does not 
exist for all biological systems. Even for well-studied sys-
tems, no set of defined equations or approximations corre-
spond exactly to how that system behaves. In many cases, 
even the smaller components making up a biological system 
are still under rigorous study. 

SYNTHETIC NETWORKS CONSTRUCTED 

 The rational construction and analysis of synthetic net-
works provides a framework for computational modeling 
studies. Using the analogy of logic flow from circuit engi-
neering, both genetic-based and protein-based synthetic net-
works have been designed and tested [5]. A library of net-
works with novel connectivities between transcriptional 
regulators and the corresponding promoters was previously 
developed for combinatorial synthesis of biological networks 
of varying levels of complexity [5]. Examples of syntheti-
cally engineered gene circuits include autoregulatory sys-
tems displaying stability through negative feedback [6], tog-
gle switches [7], logic gates, and repressilators [8]. (Fig. 2) 
Similarly, engineered protein circuits have been constructed 
to function as Boolean logic gates of AND, OR, and NOT [9, 
10]. (Fig. 3) 

 It has been suggested that the study of biological systems 
is moving towards modular biology [11]. Biology is moving 
away from the molecular perspective of correlating functions 
with individual proteins and subsequently those with indi-
vidual genes, to a more modular perspective of analyzing 
how those proteins and genes interact to produce a higher 
function. Cellular behaviour is carried out and regulated by 
‘modules’ that are themselves made up of many species of 
interacting molecules, ranging from nucleotides to the many 
proteins coded by genetic sequences. Modules have evolved 
to perform specific functions, much like electrical circuits 
have been engineered for specific purposes. These modules 
can be classified by function, such as genetic switches, flip-
flops, logic gates, amplifiers and oscillators. Another means 
of classification is to define ‘network motifs’ to represent 
interconnections that are more commonly found, such as 
feed-forward loops, single-input modules (SIM), and dense 
overlapping regulons (DOR) [12]. General principles and 
mechanisms that govern the behaviour and structure of mod-
ules can be elucidated through studies of synthetic networks, 
with the help of molecular engineering and computer sci-

 

 

 

 

 

 

 

Fig. (1). Global picture of computational modeling approaches that 

can be used for studying synthetic networks. 
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ence. However, looking only at modular components of bio-
logical networks is still insufficient for understanding the 
system itself. 

 To head towards a systems-level analysis, computational 
modeling approaches become even more important. Reduc-
tionism has been a dominant approach to studying biology, 
reducing a system into the components and attempting to re-
connect those components through assumptions and ap-
proximations. However, a larger issue that cannot be ad-
dressed by reductionism is the lack in understanding of the 

dynamic and nonlinear behaviour of the systems, which can 
only be obtained by taking a holistic approach. Based on in 
silico prediction and optimization from computational mod-
els, more complex circuits can be rationally assembled from 
subnetworks. These larger circuits can then be used for fur-
ther experimental study and implementation. 

THE NEED FOR COMPUTATIONAL APPROACHES 

 A computational model is needed to assemble the wealth 
of data together in order to predict network function and be-

 

 

 

 

 

 

 

 

Fig. (3).Examples of engineered synthetic protein circuits.  A) An AND gate:  the protein (white) is active only in the presence of both 

input proteins, B) an OR gate: the protein is active when one or both input proteins are present, and C) a NOT gate: the protein is no longer 

active in the presence of an input protein. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Examples of engineered synthetic genetic circuits.  A) A negative-feedback circuit consists of a promoter that drives the expres-

sion of both a target gene and a repressor gene that inhibits expression of its own promoter. B) a toggle switch circuit regulates the expres-

sion of a target gene by inducer molecules.  Promoter 1 drives the expression of Repressor 2; Promoter 2, both Repressor 1 and the target 

gene.  Repressor 1 inhibits expression of Promoter 1; Repressor 2, Promoter 2.  When an inducer molecule blocks the expression of Re-

pressor 2, the inhibition of Promoter 2 is released and the target gene is expressed; conversely, when an inducer molecule blocks Repressor 1, 

the target gene is not expressed. C) an oscillator circuit: three repressor proteins forma  cyclic negative feedback loop, each inhibiting the 

expression of another repressor protein; when Promoter 1 drives the expression of Repressor 3, Promoter 3 is blocked, causing an accumula-

tion of Repressor 1; this accumulation inhibits the expression of Repressor 3, which then causes an accumulation of Repressor 2 and inhibi-

tion of Repressor 1; when the expression of Repressor 1 is blocked, this causes an accumulation of Repressor 3 and the cycle repeats, result-

ing in oscillating concentrations of the three repressor proteins. 
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haviour, predictions that can subsequently be tested experi-
mentally. Simulations of genetic networks have revealed 
behaviours that were not apparent from studies of the iso-
lated interactions alone. A systematic analysis of four simple 
signaling pathways determined that the integrated network of 
cross-talking pathways showed properties that were not ap-
parent in any of the individual pathways [12, 13]. These re-
sults show promise in using computational means to eluci-
date system properties and behaviours. 

 Computational models can provide effective descriptions 
of biological networks at different levels of resolution. In 
many biological networks, molecular species exist in very 
low copy numbers despite huge gene numbers, making it 
difficult to detect these small populations of proteins and 
mRNA even with current high-throughput techniques such 
as microarrays. Thus, well defined models and simulations 
will significantly assist in providing insights for constructing 
and analyzing synthetic networks. 

QUALITATIVE COMPUTATIONAL MODELING 
APPROACHES 

 Many attempts thus far have focused on mapping and 
causally modeling the different components of biological 
networks. Hypotheses are then proposed to describe the sys-
tem behaviour. Using the logical binary approach, also 
known as the Boolean network model, on and off states have 
been used to describe the state of genes and proteins in a 
circuit [14, 15]. In an attempt to screen active networks that 
show significant changes in gene expression under specific 
conditions, one group tested an algorithm that combined a 
statistical scoring measure with mRNA expression data to 
uncover potential regulatory pathways in a systematic and 
integrative fashion [16]. As a proof of concept, high scoring 
networks were compared to known natural regulatory net-
works in literature. Similarly, another group causally repre-
sented regulatory connections between different genes as 
weights so that the net effect of regulation on a particular 
gene expression was calculated by summing the weights of 
its inputs [17]. 

 Early characterization of any network is establishing the 
elements involved, the connectivity between the elements, 
and any associated parameters controlling the interactions. 
While a qualitative mapping of the elements in a system pro-
vides a visual representation and suggests directionality, in 
order to allow predictive power to the design of synthetic 
networks, these hypotheses must be tested against quantita-
tive models. Because a biological system is not simply the 
sum of all its parts, even the most accurate diagram of its 
interconnections will not fully reveal the kinetics of that sys-
tem without quantitative considerations. (Fig. 4-A) 

QUANTITATIVE COMPUTATIONAL MODELING 
APPROACHES 

 Conventional methods of creating network models in-
volves performing a series of experiments, identifying spe-
cific interactions, conducting extensive literature research for 
confirmation, and repeating. Several methods are available to 
reveal regulatory relationships based solely on mRNA ex-
pression data from microarray studies. Microarray analysis is 
superior because it is automated and a large amount of data 
can be found in parallel. However, the many mechanisms 

occurring in a single system including post-transcriptional 
and post-translational modifications cannot be incorporated 
all at once on a microarray without losing precision and ac-
curacy. An alternative means of incorporating many different 
mechanisms that occur simultaneously in a system is through 
algorithms for in silico experiments and computational mod-
eling. 

 Quantitative computational approaches consist of two 
distinct aspects, namely data mining and simulation. Data 
mining attempts to extract hidden patterns from huge quanti-
ties of experimental data in order to form hypotheses. Such 
data mining has been used extensively in bioinformatics to 
predict exon-intron regions and protein structures, as well as 
gene regulatory networks from expression profiles [16]. 
Here, statistical correlations between expression levels are 
inferred to determine likely interactions. Alternatively, simu-
lation-based analysis tests hypotheses with in silico experi-
ments, these predictions can then be tested by in vitro and in 
vivo studies. Simulations predict the kinetics of systems, 
incorporating assumptions and approximations to complete 
the models. They are generally based on heuristics and statis-
tical considerations, the validity of which can be tested ex-
perimentally. Simulations often require the integration of 
multiple hierarchies of models that span several orders of 
magnitude in terms of scale, abundance, binding affinities, 
and rate constants [18]. Iterative comparisons between ex-
perimental observations and computational models will re-
veal inconsistencies that need to be dealt with. Assumptions 
and approximations can then be refined to better correlate 
generated models with experimental results.  

 Current advances in high-throughput experimentation 
produce the large amount of quantitative data needed to sup-
port simulation-based studies. Advances in software and 
computational power have allowed for more realistic, com-
plex biological models including those for bifurcation of the 
cell cycle, metabolic analysis, and oscillatory circuits [19-22] 
(Table 1). 

 Due to the complexity of biological systems, computer 
simulations and heuristics are often used as part of experi-
mental research methods to determine relationships between 
inputs to outputs of biological networks, both natural and 
synthetic. The choice of what is to be modeled depends on 
the availability of biological knowledge that can be incorpo-
rated into the model without adding more unknowns and 
variability. Computational modeling approaches will help to 
predict the underlying mechanisms of these networks, pre-
dictions which can then be supported or eliminated through 
experimentation. To attain a systems-level understanding, 
the question of what to look for is difficult to resolve. In 
many cases, it is challenging to intuitively predict how a 
system will behave and how it will respond to perturbations.  

 Abstract models of biological systems can be developed 
based on general hypotheses. While this may be useful for 
obtaining new insights into biological processes and allows 
the classification of different systems under broad headings, 
abstract and intuitive reasoning alone is not sufficient to 
handle the complexity of biological networks. Intuition is not 
enough for constructing functional synthetic networks and so 
the design of synthetic networks needs to be accompanied 
and guided by computational models. Even then, this is a 
daunting task due to the high degree of complexity in bio-



Computational Modeling Approaches for Studying of Synthetic Current Bioinformatics, 2008, Vol. 3, No. 2      5 

logical systems. Not only are experiments difficult to carry 
out on complex systems, but it is also1 challenging to obtain 
an accurate representation through simulation. This point 
again emphasizes the need to closely study simpler compo-
nents and subsystems before making that leap to studying 
entire complex systems. Once the components and subsys-
tems are characterized and models verified with experimen-
tal data, a systematic means can be used to progressively 
build these simpler synthetic networks into one of higher 
complexity with the aid of computational modeling ap-
proaches. 

Deterministic Chemical Kinetics Approach 

 Chemical kinetic models represent a biological process as 
a system of chemical reactions. (Fig. 4-B) As such, concen-
trations of each molecular species involved in that process 
defines the state of the system at any given time. The interac-
tions between molecular species are simplified into chemical 
reactions, where reactions occurring would alter the popula-
tion of molecular species. Each potential chemical reaction is 
represented by a differential equation involving reaction 
rates, and other relevant reaction parameters such as binding 
affinities. (Fig. 4-C) A time course of the concentration 
changes of the molecular species is simulated in order to 
produce a system transition path. This deterministic ap-
proach assumes a predictable process governed by a set of 
differential equations, namely reaction-rate equations [42]. 
Networks representing bacterial chemotaxis and bacterio-
phage infections have been modeled using this chemical ki-
netics approach and have been verified experimentally 
through quantitative kinetics studies [3, 12, 43-45]. 

 Biological modeling tools do not provide the same preci-
sion as tools established for circuit engineering. This lack of 
predictive power means that many approximations are incor-
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porated into quantitative models, depending on how much 
prior knowledge is available. One of the complications pre-
sented by biological systems is varying kinetic rate scales 
and binding affinities. Starting with mapped connectivities 
from qualitative modeling of small subnetworks, it is possi-
ble to form and test algorithms for inferring network relevant 
parameters by quantifying molecular responses to a given 
perturbation. However, emerging technologies to facilitate 
these studies face the challenge that the larger the quantity of 
data generated, often the lower the quality and resolution. As 
well, parameters are often underdetermined, that is, the num-
ber of unknown parameters outnumbers those already estab-
lished from previous experimental work. Often, many pa-
rameters need to be determined by fitting specific experi-
mental observations using trial and error. Employing this 
brute force approach, one group followed the time courses of 
major cyclin-dependent kinase activities in budding yeast 
cell cycles [20]. Quantitative simulations were then required 
to predict relevant parameters. However, these predictions 
may give rise to multiple solutions that must be further dis-
cerned by more detailed studies to eliminate improbable so-
lutions and distinguish between different network topologies. 

 Despite the approximations required to develop quantita-
tive models, recent attempts to advance the mathematical 
modeling of genetic regulation have been reported for rela-
tively simple networks. These models have aimed to eluci-
date the underlying kinetics of transcriptional regulation 
[46]. Steady state analysis can be conducted without prior 
knowledge of any exact rate constants by solely looking at 
the structure of the network. Results are then confirmed by 
intensive experimentation. For those rate constants that are 
known from previous studies, changes to stimuli and reac-
tion constants can then be correlated with changes in system 
behaviour. Models incorporating assumed kinetic rates are 
useful for approximating system behaviour and function 
even though exact kinetic rates are not readily available. In 
other cases, relative kinetic rates have been used to approxi-

Table 1. Software Tools Developed for the Modeling and Simulation of Biological Interactions 

 

Tools Available Description Source 

BioJake Visualization tool for the manipulation of metabolic pathways [23] 

BioSPICE Software system for access to current computational tools [24, 25] 

CellDesigner Software for diagrammatic editing of biological networks [26] 

CellWare Integrative multi-algorithmic simulation tool for deterministic and stochastic cellular events [27, 28] 

COPASI Platform-independent tool for the simulation of biochemical events [29] 

Dizzy Software tool for modeling integrated large-scale networks deterministically and stochastically [30] 

Dynetica Simulation tool for studying kinetic models of dynamic networks [31] 

E-CELL Software environment for simulation of integrative models of cellular behaviour [32] 

Gepasi Software system for modeling chemical and biochemical reaction networks [33-35] 

Pathway Tools Software environment for creating model-organism databases [36] 

StochSim Stochastic simulation tool for chemical reactions [37] 

STOCKS Stochastic kinetic simulation tool for biochemical processes [38] 

Systems Biology Work-
bench (SBW) 

Software framework for communication between software applications [39] 

Virtual Cell Computational framework for modeling and testing biological networks [40, 41] 
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mate system behaviour. Since exact kinetic rates of the com-
ponents were unknown, randomly chosen kinetic rates were 
assigned to different components and a large number of 
computational models were generated [47]. Experimentation 
was then used to fit the predicted data.  

Stochastic Kinetics Approach 

 While some biological processes can be modeled using 
simple chemical kinetics and deterministic approaches, many 
are more accurately represented by random events, in which 
case stochastic considerations are used instead of specifying 
differential equations. To capture probabilistic fluctuations 
in gene expression and genetic regulatory networks such as 
that in the lysis-lysogeny decision circuit of bacteriophage 
lambda, stochastic approaches provided more accurate repre-
sentations [48-50]. Stochastic models can also be used to 
deduce the effects of noise within a synthetic network, po-
tentially leading to the manipulation of the network itself in 
order to improve the signal-to-noise ratio within these net-
works [51, 52].  

 A stochastic approach regards changes over time as ran-
dom-walk processes, with no set of differential equations 
defined, and takes into account inherent fluctuations that are 
not considered in the deterministic kinetic approach. Sto-
chastic effects may be particularly significant in some bio-
logical systems with small molecular populations involved. 
Although this stochastic basis is more accurate in modeling, 
it is more difficult to solve mathematically. (Fig. 4-D) How-
ever, numerical simulations are possible using Monte Carlo 
principles [42, 53, 54]. Instead of considering reaction pa-
rameters as reaction rates, they are treated as reaction prob-
abilities. A software called STOCKS (STOChastic Kinetic 
Simulations) was developed to run Monte Carlo simulations 
of biochemical processes such as the binding of transcrip-
tional regulators using a stochastic simulation algorithm 
[38]. 

 Simulations using stochastic considerations have been 
reported for biological systems involving genetic and enzy-
matic reactions between molecular populations that were 
relatively small, including synthetic oscillatory networks [8, 
55], transcriptional regulation [55], and circadian rhythms 
[56, 57]. For large populations of molecular species, the pre-
dictions obtained from stochastic approaches match with 
deterministic ones. However, at smaller population sizes, 
stochastic effects become more dominant, in which case, 
deterministic approaches become insufficient [48, 58, 59]. 
Unfortunately, for many biological networks, stochastic 
simulations are still computationally expensive due to the 
huge differences in timescales of biological interactions and 
population sizes. Various improvements, approximations, 
and hybrid approaches have been presented [60-66]. In one 
such study, stochastic simulations were done on multi-scaled 
systems to study reactions occurring in three different re-
gimes (slow, medium, and fast) as well as coupled reactions. 
The presented approach showed substantial improvement 
over using the basic stochastic simulation approach when 
applied to the study of expression and activity of Lac pro-
teins in E. coli [67]. In another, a simple genetic circuit was 
modeled and simulated using a modified Gillespie algorithm 
with a quasi-steady-state assumption. This assumption was 
shown to greatly simplify the stochastic model and to sig-

nificantly reduce the computational complexity required, 
speeding up the algorithm [60].  

 Despite providing a more complete representation of bio-
logical networks, stochastic approaches still face the chal-
lenge of dealing with several orders of magnitude in terms of 
scale and properties including binding affinities, 
specificities, and kinetic rates. Therefore, even statistics-
based theories have limitations. Although they provide in-
sights into macroscopic properties of a network, they may 
have inaccurate predictions about specific interactions. These 
limitations can be addressed with new developments in inte-
grative modeling. 

INTEGRATION OF EXPERIMENTATION AND 
COMPUTATIONAL MODELING 

 It is important to integrate computational modeling ap-
proaches with experimentation. Even when in silico models 
are generated, proper interpretation and a valid means to 
verify the predictions is required. Detailed simulations of 
processes occurring within synthetic networks allow re-
searchers the ability to quantitatively predict the behaviour 
of the network. From this hypothesis, experimental protocols 
can be designed to verify model predictions. Also, the next 
piece of information useful for refining the model can be 
uncovered, initiating the next round of experimentation. 

 The modeling of networks relies on the accurate charac-
terization of the subsystems. Working with a mathematical 
model makes it easier to test assumptions and detect contra-
dictions that arise experimentally. For these reasons, integra-
tion of simulation and experimental information will dictate 
the design of explanatory and predictive models for biologi-
cal systems [68]. Since building a complex biological system 
entails bringing together many aspects of biological proc-
esses and incorporating approximations to fill in any gaps in 
knowledge, hypotheses formed need to be iteratively verified 
through experimentation and continually-refined model 
simulations.  

Choosing an Appropriate Approach 

 Bioinformatics provides an interface to manage, charac-
terize, and interpret data found from studies of both natural 
and synthetic networks. Bringing together knowledge of sub-
systems through modeling into a larger model will reveal 
new properties of the integrated model [69]. However, preci-
sion is often difficult to attain due to the lack of precise data 
and prior knowledge necessary to develop an accurate simu-
lation model. Features of natural systems like spatial distri-
bution, localization, and cross-talk between different path-
ways are rarely accounted for. In addition, genes may be 
regulated at the transcriptional or translational level. Tran-
scribed mRNA may be alternatively spliced. Translated pro-
teins may be one of many different isoforms. Proteins often 
regulate their own production by means of transcriptional 
control and are involved in many protein-protein interac-
tions. Metabolites are also key components of biological 
networks. Natural biological loops involving both genes and 
proteins are not new concepts but there is a drive to attain a 
quantitative perspective on this regulation and complexity. 
The level of detail and precision necessary in forming a 
complete model depends on the application and what is be-
ing studied. The level of detail will dictate the number of 
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model parameters involved, many of which may need to be 
approximations and assumptions due to the lack of prior ex-
perimental data. Models become unreliable when there is a 
lack of data or too many variables at once requiring ap-
proximations. As a result, the computational modeling ap-
proach adopted would be limited by data availability. 

 The computational modeling approach chosen also 
largely depends on the application intended and the resolu-
tion necessary to describe a certain biological process. Quali-
tative approaches will be required to establish the connec-
tivity between components, while quantitative approaches 
are required to observe concentration perturbations. Consid-
erations that need to be taken include whether the model is to 
be deterministic or stochastic, qualitative or quantitative. 
Previous computational studies based on quantitative and 
stochastic models have mainly been on small and simple 
networks. The reasons for this restriction are a lack of com-
plete quantitative data to input as parameters, only partial 
characterization of the networks by experimental studies, and 
expensive computational complexity required to simulate 
network behaviours. However, the future for quantitative 
approaches appears promising as better experimental proce-

dures, including high-throughput, large-scale techniques 
such as microarrays and mass spectrometry are developed 
[70, 71]. Databases are also being developed to collect 
shared, published experimental parameter data [72] (Table 
2).  

 In particular, the construction of useful and predictive 
synthetic networks allows the direct prediction and meas-
urement of model parameters. As both the complexity and 
design of the networks are under control of the designer, 
there are fewer ambiguities and uncertainties. As well, there 
is a firmer foundation upon which more complex networks 
can be built. With these developments, quantitative, stochas-
tic approaches will become increasingly practical. 

APPLICATIONS OF SYNTHETIC BIOLOGY 

Elucidating Network Kinetics of Natural Biological Net-

works 

 The design of synthetic networks allows chosen subnet-
works of natural biological systems to be isolated. Modeling 
and experimental studies can be focused first on understand-
ing the isolated subsystem before progressively increasing 
complexity. Accurate models of synthetic networks provide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4).  Example of different approaches to describing a system.  A)  Molecules A, B, C, and D describe the protein elements in a pro-

tein interaction system, where A is converted into B upon interacting with another B molecule, B is converted into C upon interacting with 

another C molecule, and C is decayed into molecule D.  A qualitative mapping of the connections between each protein does not describe 

factors such as stoichiometry and kinetic rates.  B)  A representation of this system as a series of chemical reactions reveals the stoichiometry 

of each element involved at each intermediate.  C)  Deterministically, these chemical reaction relations can be described as a set of differen-

tial equations where A(t), B(t), C(t) and D(t) are concentrations over time.  k1, k2 and k3 are rate constants at each intermediate step.  A de-

terministic approach assumes a spatially homogeneous distribution of molecular species.  D)  As reactions occur at different rates depending 

on the local concentrations of reactants, local concentration fluctuations will arise that are different from the rest of the population.  These 

local fluctuations can be studied stochastically for a more spatially accurate representation of the system. 
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fundamental insights and act as a foundation with which to 
describe natural biological networks, including genetic regu-
latory networks and protein signaling pathways. The ultimate 
goal of synthetic biology is to construct increasingly com-
plex networks, concomitantly assembling increasingly more 
complete models of natural systems. The advantage of this 
approach is that at each stage, subsystems have been charac-
terized by modeling and experimentation, thus keeping the 
number of unknowns at a minimum. Practically, this ap-
proach reduces the degree of trial-and-error experimentation 
required for the understanding of complex biological net-
works. Once the structures of synthetic networks are mapped 
out and their functional dynamic properties are understood, 
an ever-growing library of circuits will facilitate the classifi-
cation and comparison of subsequent circuits to provide yet 
more insights into the complexity of natural biological sys-
tems. Synthetic biology allows the study of natural regula-
tory networks and cellular behaviours using de novo net-
works, potentially leading to future applications in biotech-
nology and medicine.  

 Undoubtedly, signaling networks are complex and highly 
interconnected, interacting at several levels to2 regulate bio-
logical functions within cells [82]. Synthetic genetic regula-
tory systems mimicking those of mammalian cells have led 
to the potential of designing mammalian cells with desired 
properties for tissue engineering, gene therapy, and bio-
pharmaceutics [83]. Furthermore, many diseases result from 
malfunctioning of natural biological networks including both 
signaling pathways and transcriptional regulation. In dis-
eases like cancer, single abnormalities in signaling pathways 
do not lead to complications, but the combined effect of mul-
tiple abnormalities to several key pathways result in substan-
tial consequences. Understanding how individual compo-
nents function within the context of a larger, complex signal-
ing network provides a molecular view of which interactions 
are involved in causing the diseased state. 

                                                
2 This is where Table 2 will be placed as a new page. See pdf version. 

Rewiring of Transcriptional Regulatory Networks Con-

trolling Cell Fate 

 Stem cells are of great interest for their therapeutic poten-
tial in regenerative medicine. They are characterized by two 
properties: self-renewal, the ability to remain in an undiffer-
entiated state, and potency, the capacity to differentiate into 
more specialized cell types. Embryonic stem cells (ESCs) 
are said to be pluripotent and are able to differentiate into 
any cell type of the three germ layers. Until recently, differ-
entiation marked an endpoint of unidirectional development. 
However, there is accumulating research demonstrating that 
the state of a differentiated cell, such as a fibroblast cell, can 
be reprogrammed to induce a pluripotent, ESC-like state. 
Reprogramming here describes the collective epigenetic 
changes that cause corresponding changes in the gene ex-
pression profile of a cell. Recent studies in both mouse and 
human cells have identified a small set of ectopically ex-
pressed transcription factors capable of forcing fibroblast 
cells into a pluripotent state. These cells have appropriately 
been dubbed iPS cells (induced pluripotent stem cells) [84-
87].  

 iPS cells demonstrate the feasibility of rewiring the tran-
scriptional circuitry of specialized cells at the molecular 
level to manipulate cell fate in vitro. By introducing a set of 
four transcription factors several groups have generated 
pluripotent cells that are similar to ESCs in their morphol-
ogy, expression of specific ESC marker genes, proliferation, 
surface antigens, and epigenetic status [85-88]. It is interest-
ing to note that while some groups used the transcription 
factors Oct4, Sox2, Klf4, and c-Myc [84-86, 89], others used 
Oct4, Sox2, Nanog, and Lin28 [87]. Biochemical and genetic 
studies have established that Oct4, Sox2 and Nanog are re-
sponsible for the maintenance of ESC pluripotency and self-
renewal [90, 91]. It was thus unexpected that Takahashi et al 
found Nanog to be dispensable as a core reprogramming 
factor. One explanation is that the introduction of Oct4 and 
Sox2 can promote the endogenous activation of Nanog. Re-
sults have shown that Oct4, Sox2 and Nanog work together 
to form regulatory network motifs of autoregulatory and 
feed-forward loops [25]. 

Table 2. Databases Developed to Store, Categorize, and Share Data from Biological Studies and Modeling 

 

Database Description Website Source 

Alliance for Cellular Signal-
ing (AfCS) 

Collection of databases and tools to study signaling processes http://www.afcs.org/ [73] 

BioModels Database of published, peer-reviewed, quantitative models of 
biochemical and cellular networks 

http://www.ebi.ac.uk/biomodels/ [74] 

BioSilico Integrated web-based database system for metabolic pathways http://biosilico.kaist.ac.kr [75] 

BRENDA Information system on enzyme properties and functions http://www.brenda.uni-koeln.de/ [76] 

EcoCyc Pathway database describing biological networks of E. coli http://ecocyc.org [77] 

ENZYME Repository for enzyme nomenclature http://expasy.org/enzyme/ [78] 

Kyoto Encyclopedia of Genes 
and Genomes (KEGG) 

Knowledge database system for analysis of gene functions and 
pathways; includes the databases: 

GENES, PATHWAY, and LIGAND 

http://www.genome.ad.jp/kegg/ [79] 

MetaCyc Database describing metabolic pathways in model organisms http://MetaCyc.org [80] 

ERGO (WIT) Database system for comparative analysis of sequenced ge-
nomes and metabolic reconstructions 

http://wit.integratedgenomics.com/GO
LD/ 

[81] 
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 A better understanding of the differentiation process, the 
networks regulating it, and the mechanisms controlling cellu-
lar reprogramming will further advance iPS studies. Compu-
tational modeling of synthetic networks will provide insights 
that help to identify other factors, both genes and proteins 
that can be tested for induction of iPS cells. Beyond the iden-
tification of factors that can induce pluripotency, considera-
tions to the kinetics and efficiency of this induction are just 
as important. As can be seen from the use of different tran-
scription factors to generate iPS cells, several of these factors 
such as c-Myc and Klf4 are not core reprogramming factors. 
While they can be replaced by other transcription factors, 
these substitutions may result in delayed and less efficient 
induction [84]. A computational analysis of how these fac-
tors regulate the epigenetic state of a cell will help to define 
a more specific role for each of the factors used to generate 
iPS cells.  

 Furthermore, results from one group have suggested that 
exogenous expression of Oct4, Sox2, Klf4, and c-Myc may 
only be necessary during the initial activation of the repro-
gramming process to trigger changes in the endogenous tran-
scriptional expression program that would lead to pluripo-
tency [88]. Computational models can be used to study how 
long an exogenous signal must be maintained before suffi-
cient changes in a cell are made for pluripotency. This will 
also help to address what epigenetic changes such as chro-
matin reorganization are occurring during the reprogram-
ming of a cell. Computational studies are necessary to fur-
ther characterize the induction process. The identified tran-
scription factors are sufficient to generate iPS cells; how-
ever, it may be a subset of the downstream protein products 
of these factors that are the necessary inputs. In fact, it may 
be advantageous to model the modular networks of the input 
factors instead of the individual factors themselves. For in-
stance, Nanog is part of much larger, more complex protein-
interaction network regulating the pluripotency of ESCs 
[92]. Combinatorial control of genes and proteins within a 
network is far greater in complexity than experiments alone 
can elucidate. The observed low efficiency of reprogrammed 
cells [85] indicates that not all cells are equally responsive to 
the introduced transcription factors and suggests that other 
stochastic events may need to be taken into consideration. 
Considerations of dose-dependencies of the input factors are 
also relevant for iPS studies. 

 Computational studies will provide a more comprehen-
sive map of transcriptional regulatory circuitry involved in 
maintaining different cell states. It would be interesting to 
see what combination of a few factors and events will stimu-
late iPS cells, which were originally fibroblast cells, to dif-
ferentiate into different cell types such as neural, cardiac, and 
blood cells [86] (Fig. 5). One recent study has used iPS cells 
to treat sickle cell anemƒia in a mouse model [93]. These 
results demonstrate the therapeutic potential of using repro-
grammed cells for the treatment of disease. The generation 
of patient- and disease-specific pluripotent cells allows re-
searchers to avoid controversial ethical difficulties of using 
human embryos to extract ESCs and prevents potentially 
fatal issues of tissue rejection. 

Novel Functional and Biochemical Applications 

 Besides assembling synthetic networks to help elucidate 
the underlying kinetics of natural biological systems, these 

networks can be used to monitor and manipulate the kinetics 
of cellular control, including control at the DNA level using 
artificial genetic circuits. Any constructed synthetic network 
adds to a repertoire of modular elements that can be assem-
bled together for specific, novel purposes in medical and 
biotechnological applications. The introduction of functional 
synthetic circuits of genes and proteins to control cellular 
kinetics in vivo may be possible in the future with new ad-
vancements in the field of synthetic biology. The motivation 
for using synthetic networks is to compensate for any defi-
ciencies and malfunctioning components of naturally exist-
ing networks. Computational models and simulations will 
reveal any side-effects and ensure that circuits function as 
intended.  

 Synthetic networks may serve as an interface between 
sensory inputs and biological response outputs. Future bio-
technology applications include using developed synthetic 
networks as biosensors of parameter fluctuations in a natural 
biological system. It may be possible to supplement or re-
place an existing natural biological function in diseased 
cells, including the re-engineering of viral regulatory net-
works in the development of oncolytic viral vectors to target 
cancer cells [94, 95]. The kinetics of an assembled network 
can be tweaked for particular purposes based on computa-
tional modeling predictions, which is easier with synthetic 
networks than natural ones. 

 Detailed models of synthetic systems will soon provide 
significant insights into drug discovery, such as revealing the 
effects of feedback mechanisms that may offset the effective 
dose of drugs [96]. It is conceivable that simulation-based 
screening of pharmaceutical drugs to confirm both the ex-
pected function of the drug and to reveal any unexpected 
side effects may be used to evaluate future drug discoveries. 

 

 

 

 

 

 

 

 

 

 

Fig. (5).  Cell differentiation and reprogramming.  Embryonic 

stem cells are pluripotent and can be differentiated to many differ-

ent cell types including fibroblast cells, blood cells, neural cells, 

and smooth muscle cells.  iPS cells have been generated by repro-

gramming fibroblast cells into pluripotent cells.  These patient-

derived iPS cells can then be differentiated into other cell types for 

therapeutic purposes. 
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Feedback circuits can also be developed to monitor drug 
release and pharmacokinetics.  

 Synthetic biology research also ties nicely into molecu-
lar-electronics research, where biological molecules can act 
as analogues of silicon-based integrated circuits. A move 
towards computing with biological molecules has begun to 
surface in literature, including molecular-based logic cir-
cuitry [97]. Modular synthetic networks can function as logic 
gates, and the combination of these logic gates into higher 
complexity systems will feed into the study of computational 
devices relying on proteins and their interactions [10, 98]. 
From the construction and characterization of simpler ele-
ments such as switches and logic gates, it is possible to build 
more elaborate devices to perform higher-level functions 
such as memory devices [13].  

CONCLUSIONS 

 Genomic sequencing has equipped researchers with the 
ability to generate a huge amount of data. Such sequences 
provide the ‘parts list’ for deducing the mechanisms control-
ling biological circuits. Studies of protein interactions with 
other proteins, DNA, RNA, and small molecules provide a 
connectivity map, one which is constantly being refined and 
revised. Beyond this detailed diagram of connectivity, a 
study of the kinetics of these interactions is necessary for a 
systems-level perspective and a more holistic view of bio-
logical complexity.  

 A subset of the terminology and theory can be adopted 
from circuit engineering and control theory to describe syn-
thetic networks. However, the inherent complexity of bio-
logical networks requires the aid of computational modeling 
approaches to complement such descriptions and experimen-
tation to provide a more complete perspective. Thus, accom-
panying the design of synthetic networks is the need for 
extensive modeling capabilities.  

 Qualitative modeling can be used to map out the many 
interactions and interconnectivities between network com-
ponents. For more detailed analysis, quantitative modeling 
approaches can be used to study parameters that govern the 
kinetics of biological networks. Deterministic approaches 
model networks as coupled differential equations. However, 
more relevant for biological systems are stochastic ap-
proaches that provide a more complete representation of the 
fluctuations in these networks.  

 There is a large gap between mathematically definable 
complexity and the inherent complexity of biological sys-
tems. Inference is often drawn from limited observations. 
Thus, to benefit from the full potential of synthetic networks, 
significant advancement in computational modeling ap-
proaches are required to attain a better representation of bio-
logical systems. The modeling approach chosen depends on 
the level of resolution necessary to understand designed syn-
thetic networks. Nonetheless, these modeling approaches are 
meant to be combined with experimental analysis of any 
synthetic network constructed. 

 In addition to the current importance for elucidating the 
behaviour of natural biological systems, constructed syn-
thetic networks may have their own future applications in 
drug discovery, biocomputing, and novel cellular functions.  

PERSPECTIVE AND OUTLOOK 

 The ultimate goal of computational efforts is to study the 
behaviour of higher level biological functions in silico. The 
current trend of synthetic biology is to construct and study 
select gene regulatory networks and signaling pathways. 
However, the integration of gene regulation with metabo-
lism, signaling pathways, among other biological processes 
is more interesting and biologically relevant. Though it may 
seem a super model – a single model covering all aspects of 
cellular function – may have some appeal as it would suggest 
a completion of our quest to fully understand biological 
function, this super model is of very little practical use. In-
stead, an ensemble of different models at different levels of 
resolution, abstraction, time scales, and modular behaviour 
will allow the understanding of each aspect in finer detail. 
This knowledge thus enables novel synthetic networks to be 
assembled in the development of new functions and behav-
iours for applications in medicine and biotechnology. 
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